

NOAA Technical Memorandum NMFS

DECEMBER 2020

MEASUREMENTS AND REGRESSIONS OF OTOLITHS, CEPHALOPOD BEAKS, AND OTHER PREY HARD PARTS USED TO RECONSTRUCT CALIFORNIA CURRENT PREDATOR DIET COMPOSITION

¹Mark S. Lowry, ¹K. Alexandra Curtis, ²Christiana M. Boerger

¹Southwest Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 8901 La Jolla Shores Dr. San Diego, CA 92037

> ²California State University Northridge Northridge, CA

NOAA-TM-NMFS-SWFSC-637

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Southwest Fisheries Science Center

About the NOAA Technical Memorandum series

The National Oceanic and Atmospheric Administration (NOAA), organized in 1970, has evolved into an agency which establishes national policies and manages and conserves our oceanic, coastal, and atmospheric resources. An organizational element within NOAA, the Office of Fisheries is responsible for fisheries policy and the direction of the National Marine Fisheries Service (NMFS).

In addition to its formal publications, the NMFS uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series, however, reflect sound professional work and may be referenced in the formal scientific and technical literature.

SWFSC Technical Memorandums are available online at the following websites: SWFSC:

https://www.fisheries.noaa.gov/about/southwest-fisheries-science-center

NOAA Repository: https://repository.library.noaa.gov/

NTIS National Technical Reports Library: https://ntrl.ntis.gov/NTRL/

Accessibility information

NOAA Fisheries Southwest Fisheries Science Center (SWFSC) is committed to making our publications and supporting electronic documents accessible to individuals of all abilities. The complexity of some of SWFSC's publications, information, data, and products may make access difficult for some. If you encounter material in this document that you cannot access or use, please contact us so that we may assist you. Phone: 858-546-7000

Recommended citation

Mark S. Lowry, K. Alexandra Curtis, Christiana M. Boerger. 2020. Measurements and regressions of otoliths, cephalopod beaks, and other prey hard parts used to reconstruct California Current predator diet composition, U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-637.

Measurements and regressions of otoliths, cephalopod beaks, and other prey hard parts used

to reconstruct California Current predator diet composition

Mark S. Lowry^{1,*}, K. Alexandra Curtis¹, and Christiana M. Boerger^{2,a}

¹ Southwest Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 8901 La Jolla Shores Drive La Jolla, CA 92037 Email: <u>alex.curtis@noaa.gov</u>

> ² California State University Northridge Northridge, CA

> > * Retired

^a Current address: Naval Facilities Engineering Command Southwest Environmental Division San Diego, CA

Table of Contents

Abstract	1
Introduction	1
Methods	2
Results	3
Discussion	3
Data Accessibility	4
Acknowledgments	4
Author Contributions	5
Literature Cited	5

Tables

Table 1. Whole-specimen and hard-part dimensions measured	8
Table 2. Summary of reference specimen measurements	9
Table 3. Regression summaries for prey size and hard part dimensions	.15
Table 4. Regression summaries for otolith morphometrics	.20

Appendix A. Paired Comparisons of Left and Right Sagittal Otoliths

Figure A1. Distribution of paired differenced left and right otolith length by species2	28
Figure A2. Distribution of paired differenced left and right otolith width by species	29
Table A1. Paired t-tests of left and right otolith lengths by species	30
Table A2. Paired t-tests of left and right otolith widths by species	32

Abstract

Prey hard parts are used to reconstruct species composition and prey sizes from analyses of scats or stomachs of many marine predators. Measurements of prey hard parts are often closely related to prey size, allowing estimation of lengths and weights of prey consumed. In addition, otolith morphometrics, such as length, weight, and surface area, are related to otolith survival in predator digestive tracts and may thus help predict recovery rates in scats. Measurements were taken of prey hard part dimensions, additional morphometrics for otoliths, and/or prey size (length and weight) of reference specimens for 158 prey species found in the California Current Large Marine Ecosystem (CCLME), including 137 teleosts, twelve cephalopods, two batoids, one decapod, one myxinid, and one tunicate. Regression relationships of prey size to hard part measurements, among different prey hard part measurements (e.g., otolith length to width), and among different prey size measurements (e.g., weight to length) are provided for most species to facilitate application of these data to reconstruction of predator diets in the CCLME.

Introduction

Digestion-resistant prey structures, such as teleost otoliths and cephalopod beaks, are used to reconstruct diet composition of a wide range of marine predators, from jellyfish to cetaceans (e.g., Scott 1902; Clarke 1962; Purcell 1984). Many prey hard parts can be used not only for taxonomic identification of prey, but also to estimate prey size, based on species-specific regressions of prey hard part size to prey size (e.g., Clarke 1962; Antonelis et al, 1984). Information on species composition and length frequencies of prey in marine predators has a wide range of applications, from informing our basic understanding of marine trophic ecology, to grounding the use of predator population dynamics as ecosystem indicators (e.g., Sydeman et al., 2001; Melin et al., 2012), informing ecosystem models (e.g., Kaplan et al., 2017), and supporting fisheries management (e.g., Field et al., 2007; Velarde et al., 2015). Otoliths have also been used to characterize teleost fauna in middens and sediment deposits (e.g., Fitch 1964; Fitch 1969), including deep-sea sediment cores for paleoecological research (Jones 2016).

Available identification guides for prey hard parts of species occurring in the California Current Large Marine Ecosystem (CCLME) have become increasingly comprehensive over time (Fitch and Brownell, 1968; Pinkas et al., 1971; Wolff 1984; Harvey et al., 2000; Lowry 2011). Some guides also contain regression relationships for prey hard parts to prey size (Wolff 1984; Clarke 1986; Harvey et al., 2000; Kubodera 2005). However, many prey species in the diverse forage assemblage of the CCLME have no data published to support size reconstruction, and sample sizes for many others remain limited, exacerbating the potential for considerable bias in calculating prey sizes from prey hard parts.

Otolith morphometrics may also contain information on resistance to dissolution, and thus probability of surviving passage through a predator's digestive tract, or through the water column and bioturbated surface sediment layers prior to incorporation into varved sediment layers that can be used for paleoclimate and paleoecological reconstruction. Information on otolith morphometrics may support at least partial correction for biases introduced by differential recovery rates for different fish species and sizes in diet and sediment samples. Several studies have found consistent relationships between otolith morphometrics, such as length and mass-to-

length ratio, and their recovery rates in pinniped scats (Harvey 1989; Tollitt et al., 1997; Sweeney and Harvey 2011). However, only one published data source provides such morphometrics for a suite of species, and its focus is primarily on mesopelagic forage species (Jones and Morales, 2014).

We provide extensive additional data on prey length, weight, and hard part measurements and on additional otolith morphometrics for a wide array of forage species and sizes, most of which are consumed by California sea lions (*Zalophus californianus*; M. Lowry, unpublished data, NOAA SWFSC). We also provide regression relationships among prey length, prey weight, prey hard part measurements, and, for teleosts, otolith metrics, to aid in reconstruction of diets for marine predators in the CCLME.

Methods

Reference specimens of teleosts, cephalopods, batoids, decapods, myxinids, and tunicates, with primary focus on known prey of California sea lions, were obtained or measured in situ from a wide range of sources, including preserved whole specimens and prey hard parts from museums, fresh frozen specimens from research vessels, industry samples from commercial fishing operations, and salmon hatcheries. Specimens of halfmoon (*Medialuna californiensis*) were caught with hook and line, spears, dip nets, and as bycatch in gill nets of the Ocean Research Enhancement and Hatchery Program (Boerger 2011; Bredvik et al., 2011). All specimens were collected in the Northeast Pacific, and most more specifically in the Southern California Bight or off the Central Coast of California. For whole museum specimens, length and weight were measured, with specific length measurements depending on taxon (Table 1). For hard part specimens from collections, commonly used prey hard part dimensions for that taxon were measured (Table 1), and any available data on measurements of the original whole specimen recorded. Where specimens were collected purposely for this study, whole prey and dissected hard part dimensions were measured per taxon-specific protocols (Table 1).

For whole prey specimens, measurements were taken with a measuring board $(\pm 1 \text{ cm})$ or a caliper $(\pm 0.1 \text{ mm or } \pm 1 \text{ mm})$. Whole specimens were weighed with a balance $(\pm 0.1 \text{ g})$ or with a microbalance $(\pm 0.0001 \text{ g})$. Sagittal otolith dimensions were measured using digital imaging (more details below; $\pm 0.001 \text{ mm}$) or a dissecting microscope with an ocular micrometer $(\pm 0.01 \text{ mm})$. Other types of prey hard parts, such as squid beaks, were measured with an ocular micrometer or, where necessary due to size or logistics (e.g., measurement of tooth width in the mouth of a whole batoid specimen), a manual caliper $(\pm 0.1 \text{ mm})$.

Where possible, high resolution digital photographic images of otoliths were taken with a computer connected to a Media Cybernetics Evolution MP color video camera mounted on a Zeiss Stemi 2000-C microscope. Media Cybernetics Image-Pro Plus 5.0 software was used to obtain otolith morphometrics from the resulting images (\pm 0.001 mm), including (1) otolith length, (2) otolith width, (3) perimeter length (i.e., the distance around the edge of the otolith), and (4) projected area (i.e., area of the otolith in the image). Otoliths for which digital images and morphometrics were obtained were weighed with a microbalance (\pm 0.001 mg or \pm 0.1 mg).

To complement these data for known prey species of California sea lions lacking published regression relationships of prey size to hard part size, and for which we had obtained few or no data, we drew on published and unpublished data from other studies.

No substantive systematic differences were found in any teleost species between left and right sagittal otoliths where both were measured for at least two specimens (M. Lowry, unpublished data, NOAA SWFSC; Appendix A). Therefore, for specimens with measurements for both left and right otoliths, only left-side measurements are included in data summaries and regressions. Likewise, no difference was found between left and right dactylus lengths in tuna crabs (M. Lowry, unpublished data, NOAA SWFSC), so only left-side measurements are included in data summaries and regressions.

We fit regressions for documented prey of California sea lions in the Southern California Bight and for prey species used in captive feeding studies of California sea lions (Orr and Harvey 2001; Sweeney and Harvey 2011), focusing on species for which regression relationships based on higher sample sizes were not already available (e.g., Harvey et al., 2000; Sinclair et al., 2015). Linear regressions were fitted among length dimensions of prey hard parts and for prey length to hard part size. Ln-ln regressions were fitted to weight-to-length (for whole specimens and otoliths) and area-to-length (for otoliths) data. We calculated regressions using *R* 3.6.2 (R Core Team) with the aid of the following packages: *DBI*, *odbc*, *readxl*, *tidyverse*, *magrittr*, and *broom* (Bache and Wickham 2014; R Special Interest Group on Databases et al., 2019; Wickham and Bryan 2019; Wickham et al., 2019; Hester and Wickham 2020; Robinson et al., 2020).

Results

Measurements were taken for a total of 8,142 reference specimens of 137 species of teleosts, twelve cephalopods, two batoids, one decapod, one myxinid, and one tunicate. We also incorporated published data for 21 specimens of football octopus (*Ocythoe tuberculata*; Salman and Akalin, 2012). Data are summarized in Table 2.

Regressions for prey size calculation are summarized in Table 3. Regressions for estimation of otolith morphometrics from otolith length are summarized in Table 4. Where sample sizes for individual species were limited, either regressions were calculated at a higher taxonomic resolution or were not provided if a closely related species was likely to be more reliable.

Discussion

The data and regressions reported here provide the most comprehensive reference available to date for size reconstruction of CCLME forage species from hard parts found in predator diet samples, and represent the first published set of otolith morphometric relationships to otolith length. These regressions fill taxonomic gaps in published prey size to hard part size and weight-to-length information for CCLME forage species, add previously unavailable relationships for converting otolith width – often the only unbroken dimension available to be measured – to prey size, and provide improvements over existing published relationships for numerous species in terms of size range and sample size. The open-access form of these data also will enable future work to build on them.

In many cases, data and regressions reported here include a broader range of size classes than those previously published, often extending coverage to include smaller size classes that often dominate California sea lion diets (unpublished data). Important forage species with data ranges underlying prey-size-to-hard-part regressions extended substantially to smaller size classes include Pacific hake (*Merluccius productus*), shortbelly rockfish (*Sebastes jordani*), and some mesopelagic species (Wyllie Echeverria 1987; Harvey et al., 2000; Sinclair et al., 2015).

Sample sizes were also considerably enhanced for several important forage species, including more than doubling of sample size underlying the prey-size-to-hard-part-size regressions for market squid (*Doryteuthis opalescens*), northern anchovy (*Engraulis mordax*), and *M. productus* (Kashiwada et al., 1979; Harvey et al., 2000). This increase in sample size translates to increased precision in the regression relationships such that uncertainty in population mean relationships is now relatively small in magnitude for most key forage species (Table 3).

Harvey et al. (2000) provide an overview of the key caveats to be considered in applying regressions to calculate animal size from hard part size. These include nonlinearities in otolith size to fish size for some fish species, potential dependence on growth rate of hard part size to animal length, and erosion of otoliths and perhaps other prey hard parts in digestive tracts, sediments, or other environments (e.g., Jobling and Breiby, 1986; Jones 2016), which can lead to underestimation of animal size. This study addresses some of these caveats by extending data ranges to include more size classes. Elsewhere, predator- and prey-specific correction factors for prey length have been estimated from captive feeding experiments (e.g., Harvey 1989; Tollitt et al., 1997; Sweeney and Harvey, 2011). The otolith morphometric data provided in this study may provide a basis for developing a more generalized length correction factor, since length reduction tends to be positively related to otolith size.

This reference data set can be expanded through future work to fill remaining taxonomic gaps, particularly for octopodids and elasmobranchs, and to incorporate more sources of variability in morphometric relationships, such as interannual and geographic, to more accurately reflect population means. Compiling this data set with others will also further improve taxonomic and size coverage and sample sizes. The data and regression parameters published here provide a building block for such further work in addition to improving and facilitating reconstruction of predator diets in the CCLME, among other potential applications.

Data Accessibility

Data and regression summaries are available from SEANOE (Lowry et al., 2020) and from the NOAA Fisheries SWFSC Environmental Research Division ERDDAP deployment (https://oceanview.pfeg.noaa.gov/erddap/search/index.html?searchFor=PreySizeHP).

Acknowledgments

Many researchers collected samples from R/Vs and from commercial catch. Special thanks to Darrin Bergen, who collected specimens as extensively as the CDFG R/V Mako allowed him to roam from San Diego in a day (some might argue farther). Joelle Sweeney contributed otoliths

and corresponding length and weight data for Oncorhynchus mykiss, Sebastes jordani and Sebastes goodei. Size data and specimens for Oncorhynchus gorbuscha were provided by Steve Moffitt and Dion Oxman of Alaska Department of Fish and Game, Joe Orsi of Alaska Fisheries Science Center, and Tyler Zubkowski of Department of Fisheries and Oceans Canada. Roberta Folk, Jim Carretta, Terry Farley, Amy Betcher, Rachel Struch, Morgan Martin, and Stephanie Nehasil helped measure and weigh specimens in the lab. Digital microscope equipment and instruction were provided by Wayne Perryman and Morgan Lynn. Microgram scales for weighing otoliths were provided by Bev Macewicz, Barbara Javor, and Jeff Seminoff. Collections managers and staff provided extensive access and expertise, including Ben Frable and H. J. Walker of the Scripps Institution of Oceanography (SIO) Marine Vertebrate Collection, Linsey Sala of the SIO Pelagic Invertebrate Collection and Eric Hochberg of Santa Barbara Museum of Natural History. Christine Thacker, Rick Feeney, Jeff Seigel, and Neftali Camacho of the Natural History Museum of Los Angeles County provided otoliths from the Fitch Otolith Collection. Lynn DeWitt made data accessibility through ERD's ERDDAP server a breeze and created the metadata XML file. We also thank Antonella Preti for her review of the manuscript and suggestions that improved it.

Author Contributions

MSL designed and directed the study, collected most of the measurements, conducted preliminary data analysis, and helped draft the manuscript. KAC organized, edited, and analyzed the data, and drafted the manuscript. CMB designed and implemented data collection for halfmoon, and helped edit the manuscript.

Literature Cited

- Antonelis, G. A., Jr., C. H. Fiscus, and R. L. DeLong. 1984. Spring and summer prey of California sea lions, *Zalophus californianus*, at San Miguel Island, California, 1978-79. Fish. Bull. 82: 67-76.
- Bache, S. M. and H. Wickham. 2014. magrittr: A Forward-Pipe Operator for R. R package version 1.5. <u>https://CRAN.R-project.org/package=magrittr</u>
- Boerger, C. M. 2011. Life history, diet, and production of an herbivorous temperate marine fish, *Medialuna californiensis* (Family Kyphosidae). MS Thesis, California State University, Northridge. 33 p.
- Bredvik, J. J., C. Boerger, and L. G. Allen. 2011. Age and growth of two herbivorous, kelp forest fishes, the Opaleye (*Girella nigricans*) and Halfmoon (*Medialuna californiensis*). Bull. Southern California Acad. Sci. 110: 25–34.
- Clarke, M. R. 1962. Significance of cephalopod beaks. Nature 193: 560-561.
- Clarke, M. R. (Ed.) 1986. A handbook for the Identification of Cephalopod Beaks. Clarendon Press, Oxford.
- Field, J. C., E. J. Dick, and A. D. MacCall. 2007. Stock assessment model for the shortbelly rockfish, *Sebastes jordani*, in the California Current. NOAA Tech. Memo. NOAA-TM-NMFS-SWFSC-405, 108 p.
- Fitch, J. E. 1964. The fish fauna of the Playa del Rey locality, a southern California marine Pleistocene deposit. Los Angeles Cty. Mus. Contrib. Sci. 82: 3-35.

- Fitch, J. E. 1969. Fossil records of certain schooling fishes of the California current system. CalCOFI Rep. 13: 71-80.
- Fitch, J. E. and R. L. Brownell, Jr. 1968. Fish otoliths in cetacean stomachs and their importance in interpreting feeding habits. J. Fish. Res. Bd. Canada. 25: 2561-2574.
- Harvey, J.T. 1989. Assessment of errors associated with harbour seal (*Phoca vitulina*) faecal sampling. J. Zool. 219: 101-111.
- Harvey, J. T., T. R. Loughlin, M. A. Perez, and D. S. Oxman. 2000. Relationship between fish size and otolith length for 63 species of fishes from the Eastern North Pacific Ocean. NOAA Technical Report NMFS, 150, 38 p.
- Hester, J. and H. Wickham. 2020. odbc: Connect to ODBC Compatible Databases (using the DBI Interface). R package version 1.2.2. <u>https://CRAN.R-project.org/package=odbc</u>
- Jobling, M. and A. Breiby. 1986. The use and abuse of fish otoliths in studies of feeding habits of marine piscivores. Sarsia 71: 265-274.
- Jones, W. A. 2016. The Santa Barbara Basin fish assemblage in the last two millennia inferred from otoliths in sediment cores. Ph.D. diss., 140 p. Univ. Cal. San Diego, San Diego, USA.
- Jones, W. A. and M. M. Morales. 2014. Catalog of Otoliths of Select Fishes from the California Current System. UC San Diego: Scripps Institution of Oceanography, 165 p. Available from <u>https://escholarship.org/uc/item/5m69146s</u>
- Kaplan, I. C., L. E. Koehn, E. E. Hodgson, K. N. Marshall, and T. E. Essington. 2017. Modeling food web effects of low sardine and anchovy abundance in the California Current. Ecol. Model. 359: 1-24.
- Kubodera, T. 2005. Manual for the identification of cephalopod beaks in the Northwest Pacific. Version 1-1. <u>https://www.kahaku.go.jp/research/db/zoology/Beak-E/index.htm</u>
- Lowry, M. S. 2011. Photographic catalog of California marine fish otoliths: Prey of California sea lions (*Zalophus californianus*). NOAA Tech. Memo. NOAA-TM-NMFS-SWFSC-483, 256 p.
- Lowry, M. S., K. A. Curtis, C. M. Boerger, and J. M. Sweeney. 2020. Measurements and regressions of California Current prey size and hard parts and otolith morphometrics. SEANOE. doi:10.17882/77522.
- Melin, S. R., A. J. Orr, J. D. Harris, J. L. Laake, and R. L. DeLong. 2012. California sea lions: an indicator for integrated ecosystem assessment of the California Current Ecosystem. CalCOFI Rep. 53: 140-152.
- Orr, A. J. and J. T. Harvey. 2001. Quantifying errors associated with using fecal samples to determine the diet of the California sea lion (*Zalophus californianus*). Can. J. Zool. 79: 1080-1087.
- Pinkas, L., M. S. Oliphant, and I. L. K. Iverson. 1971. Food habits of albacore, bluefin tuna, and bonito. Fish Bull. 152: 1-105.
- Purcell, J. E. 1984. Predation on fish larvae by *Physalia physalia*, the Portuguese man of war. Mar. Ecol. Prog. Ser. 19: 189-191.
- R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- R Special Interest Group on Databases (R-SIG-DB), H. Wickham and K. Müller. 2019. DBI: R Database Interface. R package version 1.1.0. https://CRAN.R-project.org/package=DBI
- Robinson, D., A. Hayes, and S. Couch. 2020. broom: Convert Statistical Objects into Tidy Tibbles. R package version 0.7.0. <u>https://CRAN.R-project.org/package=broom</u>

- Salman, A. and M. Akalin. 2012. A rare pelagic cephalopod Ocythoe tuberculata (Octopoda:Argonautoidea): the record fecundity for Octopoda and new data on morphometry. Turk. J. Fish. Aquat. Sci. 12: 339-344.
- Scott, T. 1903. Some further observations on the food of fishes with a note on the food observed in the stomach of a common porpoise. Ann. Rep. Fish. Bd. Scot. 21: 218-227.
- Sinclair, E. H., W. A. Walker, and J. R. Thomason. 2015. Body size regression formulae, proximate composition and energy density of Eastern Bering Sea mesopelagic fish and squid. PLoS ONE 10:e0132289. doi:10.1371/journal.pone.0132289
- Sweeney, J. M. and J. T. Harvey. 2011. Diet estimation in California sea lions, *Zalophus californianus*. Mar. Mamm. Sci. 27: E279-E301.
- Sydeman, W. J., M. M. Hester, J. A. Thayer, F. Gress, P. Martin, and J. Buffa. 2001. Climate change, reproductive performance and diet composition of marine birds in the southern California Current system, 1969–1997. Prog. Oceanogr. 49: 309-329.
- Tollit, D. J., M. J. Steward, P. M. Thompson, G. J. Pierce, M. B. Santos, and S. Hughes. 1997. Species and size differences in the digestion of otoliths and beaks: implications for estimates of pinniped diet composition. Can. J. Fish. Aquat. Sci. 54: 105-119.
- Velarde, E., E. Ezcurra, and D. W. Anderson. 2015. Seabird diet predicts following-season commercial catch of Gulf of California Pacific Sardine and Northern Anchovy. J. Mar. Sys. 146: 82-88.
- Wickham, H. and J. Bryan. 2019. readxl: Read Excel Files. R package version 1.3.1. https://CRAN.R-project.org/package=readxl
- Wickham, H., M. Averick, J. Bryan, W. Chang, L. D. McGowan, R. François, G. Grolemund, A. Hayes, L. Henry, J. Hester, M. Kuhn, T. L. Pedersen, E. Miller, S. M. Bache, K. Müller, J. Ooms, D. Robinson, D. P. Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke, K. Woo, and H. Yutani. 2019. Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686
- Wolff, G.A. 1984. Identification and estimation of size from the beaks of 18 species of cephalopods from the Pacific Ocean. NOAA Tech. Rep. NMFS 17, 50 p.
- Wyllie Echeverria, T. 1987. Relationship of otolith length to total length in rockfishes from northern and central California. Fish. Bull., U.S. 85: 383-387.

Table 1. Whole-specimen and hard-part dimensions (and abbreviations) that were measured for specimens of each taxon / prey type included in the study. Whole specimens of all taxa were weighed. No whole-specimen length dimension was measured for Decapoda. No hard part dimensions were measured for Myxinidae. For some teleost whole specimens, total length (TL) or fork length (FL) were also measured, but no regressions were fitted to those dimensions. The recoverable digestion resistant "hard part" for tunicates, the test, is also the whole-specimen dimension.

Taxon / Prey type	Whole specimen dimension	Hard part dimension(s)
Batoidea	Total length (TL)	Tooth width (THW)
Cephalopoda	Dorsal mantle length (ML)	
Doryteuthis opalescens		Upper rostrum width (URW)
Other Decapodiformes		Upper and lower rostrum length (URL, LRL)
Octopodiformes		Upper and lower hood length (UHL, LHL)
Decapoda	_	Dactylus length (DCL)
Myxinidae	Total length (TL)	-
Teleostei	Standard length (SL)	Otolith length and width (OL, OW)
Tunicata	Test length (TSL)	Test length (TSL)

Table 2. Summary of reference specimen measurements. Prey type dictated whole-specimen length dimensions (L1, L2) and prey part dimensions (P1, P2) measured (Table 1), ranges of whole specimens and prey parts measured are provided, and N indicates sample size for each potential regression among prey sizes, prey weight (Wt), and prey parts. Abbreviations for specimen and prey part dimensions are provided in Table 1. Data drawn from external sources for regressions are: most data for *M. californiensis*, which supported Boerger (2008), of which standard length and weight were previously summarized by a regression (Boerger 2008; Bredvik et al., 2011), and some data for *O. mykiss*, *S. goodei*, and *S. jordani*, part of which supported previously published regressions (Sweeney and Harvey, 2011).

							Range L1	Range P1	Ν	Ν	Ν	Ν
Prey type	Species	Family	L1	L2	P1	P2	(mm)	(mm)	L1 v P1	P1 v P2	Wt v L1	L1 v L2
batoid	Beringraja inornata	Rajidae	TL		THW		150 - 590	0.5 - 1.1	6	0	19	0
batoid	Beringraja rhina	Rajidae	TL		THW		160 - 720	0.2 - 1.2	12	0	31	0
cephalopod	Abraliopsis felis	Enoploteuthidae	ML		URL	LRL	17 - 59	0.5 - 1.3	67	65	70	0
cephalopod	Chiroteuthis calyx	Chiroteuthidae			URL	LRL		1.3 - 1.3	0	1	0	0
cephalopod	Cranchia scabra	Cranchiidae	ML		URL	LRL	60 - 114	0.8 - 1.9	7	7	8	0
cephalopod	Doryteuthis opalescens	Loliginidae	ML		URW		41 - 163	0.5 - 1.7	128	0	134	0
cephalopod	Gonatopsis borealis	Gonatidae	ML		URL	LRL	23 - 133	0.4 - 3.2	53	52	54	0
cephalopod	Gonatus onyx	Gonatidae	ML		URL	LRL	39 - 65	1.2 - 2.6	12	12	12	0
cephalopod	Haliphron atlanticus	Alloposidae	ML		UHL	LHL	62 - 62	10.3 - 10.3	1	1	1	0
cephalopod	Leachia dislocata	Cranchiidae	ML		URL	LRL	11 - 17	0.5 - 0.9	3	4	3	0
cephalopod	Octopus bimaculatus	Octopodidae	ML		UHL	LHL	32 - 44	2.2 - 2.5	4	4	4	0
cephalopod	Octopus rubescens	Octopodidae	ML		UHL	LHL	75 - 75	4.9 - 4.9	1	1	1	0
cephalopod	Ocythoe tuberculata	Ocythoidae	ML		UHL	LHL	20 - 335	7.3 - 23.2	13	13	18	0
cephalopod	Onychoteuthis borealijaponica	Onychoteuthidae	ML		URL	LRL	56 - 240	1.6 - 5.7	52	51	55	0
cephalopod	Onykia robusta	Onychoteuthidae			URL	LRL		3.3 - 3.3	0	1	0	0
decapod	Pleuroncodes planipes ¹	Munididae			DCL			9.5 - 21.4	0	0	0	0
hagfish	Eptatretus stoutii	Myxinidae	TL				100 - 480		0	0	29	0
teleost	Allosmerus elongatus	Osmeridae	SL				42 - 116		0	0	14	0
teleost	Ammodytes hexapterus	Ammodytidae	SL		OL	OW	55 - 187	2.5 - 3.2	4	4	0	0
teleost	Amphistichus argenteus	Embiotocidae	SL		OL	OW	71 - 145	2.9 - 5.5	7	7	7	0
teleost	Anoplopoma fimbria	Anoplopomatidae			OL	OW		2.4 - 11.8	0	26	0	0
teleost	Arctozenus risso	Paralepididae	SL	TL	OL	OW	56 - 252	3.3 - 3.3	0	1	20	14

¹No prey lengths were measured for *Pleuroncodes planipes*, so sample sizes for regression appear as zero here, but a regression for weight to hard part size is provided in Table 3.

Duon truno	Smooile	Fomile	T 1	1.2	D1	Ъĵ	Range L1	Range P1	N I 1 D1	N D1 -: D2	N W4 L 1	N 1 1 1 2
Prey type	Species	Family		L2		P2	(mm)	(mm)			WUV LI	
teleost	Argentina sialis	Argentinidae	SL	-	OL	OW	45 - 175	1.2 - 5.2	3	25	50	0
teleost	Artedius corallinus	Cottidae	SL	TL	OL	OW	23 - 107	1.9 - 4	0	11	40	40
teleost	Artedius notospilotus	Cottidae	SL	TL	OL	OW	56 - 163	2.9 - 6.2	8	17	34	34
teleost	Atherinops affinis	Atherinopsidae	SL		OL	OW	98 - 108	2.1 - 4.9	10	39	10	0
teleost	Atherinopsis californiensis	Atherinopsidae	SL		OL	OW	162 - 287	3.5 - 7	11	24	11	0
teleost	Atractoscion nobilis	Sciaenidae	SL	TL			38 - 262		0	0	28	27
teleost	Benthalbella dentata	Scopelarchidae			OL	OW		3 - 3.6	0	3	0	0
teleost	Brama japonica	Bramidae			OL	OW		4.9 - 4.9	0	1	0	0
teleost	Brosmophycis marginata	Bythitidae	SL	TL	OL	OW	46 - 245	2.6 - 13.8	0	17	31	31
teleost	Careproctus melanurus	Liparidae	SL	TL	OL	OW	82 - 210	2.4 - 3.1	0	5	33	33
teleost	Ceratoscopelus townsendi	Myctophidae	SL		OL	OW	49 - 68	1.4 - 3.7	22	65	23	0
teleost	Cheilopogon pinnatibarbatus	Exocoetidae	SL	TL	OL	OW	32 - 335	8.4 - 11.6	2	9	18	16
teleost	Chilara taylori	Ophidiidae	SL		OL	OW	93 - 215	1.4 - 11.3	7	37	6	0
teleost	Chitonotus pugetensis	Cottidae	SL		OL	OW	78 - 107	3.1 - 5.6	12	23	0	0
teleost	Chromis punctipinnis	Pomacentridae	SL	FL	OL	OW	39 - 195	2.4 - 7.5	17	31	57	54
teleost	Citharichthys sordidus	Paralichthyidae	SL		OL	OW	34 - 335	1.1 - 7.9	27	23	27	0
teleost	Citharichthys stigmaeus	Paralichthyidae	SL		OL	OW	45 - 99	0.8 - 3.6	9	29	10	0
teleost	Citharichthys xanthostigma	Paralichthyidae			OL	OW		3.1 - 6.5	0	26	0	0
teleost	Clupea pallasii	Clupeidae			OL	OW		1.8 - 5.3	0	45	0	0
teleost	Cololabis saira	Scomberesocidae	SL	FL	OL	OW	68 - 251	0.8 - 2.4	21	37	77	47
teleost	Cymatogaster aggregata	Embiotocidae	SL		OL	OW	90 - 114	2.1 - 7.7	5	96	5	0
teleost	Diaphus theta	Myctophidae	SL		OL	OW	31 - 61	1.1 - 3.2	21	49	21	0
teleost	Embiotoca jacksoni	Embiotocidae	SL		OL	OW	140 - 177	2.8 - 9.3	0	29	5	0
teleost	Engraulis mordax	Engraulidae	SL	FL	OL	OW	50 - 157	1.7 - 5.3	107	106	239	55
teleost	Eucryphycus californicus	Zoarcidae	SL	TL			66 - 170		0	0	9	9
teleost	Genyonemus lineatus	Sciaenidae	SL		OL	OW	86 - 341	5.3 - 16.8	13	24	12	0
teleost	Girella nigricans	Girellidae	SL	FL	OL	OW	46 - 358	3 - 11.5	2	14	31	30
teleost	Glyptocephalus zachirus	Pleuronectidae	SL	TL	OL	OW	45 - 340	3.2 - 7.4	2	49	46	46
teleost	Halichoeres californica	Labridae	SL	FL	OL	OW	42 - 194	1.1 - 4	14	25	59	15

Prey type	Species	Family	L1	L2	P1	P2	Range L1 (mm)	Range P1 (mm)	N L1 v P1	N P1 v P2	N Wt v L1	N L1 v L2
teleost	Halichoeres semicinctus	Labridae	SL				162 - 207		0	0	2	0
teleost	Heterostichus rostratus	Clinidae	SL	FL	OL	OW	82 - 340	1.7 - 3.8	2	10	29	28
teleost	Hippoglossina stomata	Paralichthyidae	SL		OL	OW	190 - 190	3 - 5.3	0	22	1	0
teleost	Hyperprosopon argenteum	Embiotocidae	SL		OL	OW	125 - 186	5.5 - 8.5	5	5	5	0
teleost	Hypocritichthys analis	Embiotocidae	SL	TL	OL	OW	34 - 120	4.4 - 7.6	4	25	39	39
teleost	Hypomesus pretiosus	Osmeridae	SL		OL	OW	145 - 145	3.4 - 4.9	1	22	0	0
teleost	Icelinus filamentosus	Cottidae	SL	TL	OL	OW	47 - 203	4.2 - 10.4	1	31	36	36
teleost	Icelinus fimbriatus	Cottidae	SL	TL	OL	OW	85 - 163	4.6 - 7.9	0	10	9	9
teleost	Icelinus tenuis	Cottidae	SL	TL	OL	OW	36 - 110	3.4 - 4.9	0	16	50	50
teleost	Icichthys lockingtoni	Centrolophidae	SL		OL	OW	25 - 325	2.3 - 11	9	22	54	0
teleost	Lampadena urophaos	Myctophidae	SL	TL			31 - 113		0	0	31	30
teleost	Lampanyctus ritteri	Myctophidae	SL		OL	OW	29 - 115	0.7 - 1.6	6	33	54	0
teleost	Lepidopsetta bilineata	Pleuronectidae	SL	TL	OL	OW	29 - 205	0.9 - 9	0	9	23	23
teleost	Leptocottus armatus	Cottidae	SL		OL	OW	106 - 144	3.7 - 9.4	3	30	0	0
teleost	Lestidiops ringens	Paralepididae	SL	TL	OL	OW	52 - 209	1.6 - 2.9	5	17	31	29
teleost	Leuresthes tenuis	Atherinopsidae	SL		OL	OW	102 - 168	2.6 - 4.2	8	17	0	0
teleost	Leuroglossus stilbius	Bathylagidae	SL		OL	OW	45 - 105	1.7 - 3.7	14	38	38	0
teleost	Lycodes cortezianus	Zoarcidae	SL		OL	OW	360 - 420	3.1 - 5.3	3	14	0	0
teleost	Lycodes pacificus	Zoarcidae	SL	TL	OL	OW	81 - 222	2.8 - 4.7	0	10	46	46
teleost	Lyconema barbatum	Zoarcidae	SL	TL	OL	OW	74 - 139	2 - 2.6	0	7	40	40
teleost	Lyopsetta exilis	Pleuronectidae	SL		OL	OW	44 - 49	1.9 - 5.3	2	53	4	0
teleost	Magnisudis atlantica	Paralepididae	SL	TL	OL	OW	55 - 310	2.1 - 5.5	0	6	6	5
teleost	Mallotus villosus	Osmeridae			OL	OW		2 - 3.4	0	68	0	0
teleost	Medialuna californiensis	Scorpididae	SL		OL	OW	153 - 299	4.7 - 9.4	113	124	117	0
teleost	Melamphaes lugubris	Melamphaidae	SL	TL	OL	OW	20 - 110	1.6 - 5.4	0	20	49	1
teleost	Merluccius productus	Merlucciidae	SL	TL	OL	OW	40 - 650	1.2 - 24.1	205	139	459	68
teleost	Microgadus proximus	Gadidae			OL	OW		1.9 - 13.8	0	24	0	0
teleost	Microstomus pacificus	Pleuronectidae	SL		OL	OW	50 - 56	1 - 8.1	2	42	0	0
teleost	Oncorhynchus gorbuscha	Salmonidae	SL	FL	OL	OW	87 - 552	1.1 - 4.5	201	272	331	71

Drow type	Spagios	Family	T 1	12	D1	D)	Range L1	Range P1		N D1 v D2	N WtvI1	
talaaat	Species	<u>Failing</u>	LI			F 2	(IIIII)	(IIIII)				
teleost	Oncornynchus kisutch	Salmonidae	CT.			OW	142 460	4 - 5.2	0	4	0	0
teleost	Oncorhynchus mykiss	Salmonidae	SL		OL	Ow	143 - 460	3 - 6.1	52	64	22	0
teleost	Ophidion scrippsae	Ophidiidae			OL	OW		3.7 - 7.9	0	29	0	0
teleost	Ophiodon elongatus	Hexagrammidae	SL	TL	OL	OW	67 - 336	2.5 - 12.1	0	21	29	29
teleost	Orthonopias triacis	Cottidae	SL	TL	OL	OW	30 - 84	2.3 - 3	0	11	50	50
teleost	Oxylebius pictus	Hexagrammidae	SL	TL	OL	OW	37 - 146	1.6 - 4.3	6	20	40	40
teleost	Paralabrax clathratus	Serranidae	SL	TL	OL	OW	34 - 385	7.8 - 13.7	13	15	35	34
teleost	Paralabrax nebulifer	Serranidae	SL	TL	OL	OW	39 - 223	8.4 - 12.5	0	5	50	50
teleost	Paralepididae	Paralepididae	SL				184 - 184		0	0	1	0
teleost	Paralichthys californicus	Paralichthyidae	SL		OL	OW	92 - 355	2.8 - 8.2	5	5	5	0
teleost	Parophrys vetulus	Pleuronectidae	SL	TL	OL	OW	39 - 285	2.4 - 9.5	0	59	56	55
teleost	Peprilus simillimus	Stromateidae	SL		OL	OW	103 - 167	3.6 - 6.2	14	30	16	0
teleost	Phanerodon furcatus	Embiotocidae	SL		OL	OW	65 - 189	3.8 - 9.7	6	60	5	0
teleost	Phanerodon vacca	Embiotocidae	SL		OL	OW	168 - 219	7.7 - 9.9	7	7	7	0
teleost	Physiculus rastrelliger	Moridae	SL	TL	OL	OW	63 - 203	4.5 - 10.2	5	17	58	49
teleost	Pleuronichthys decurrens	Pleuronectidae	SL		OL	OW	205 - 205	5.2 - 5.2	1	1	1	0
teleost	Pleuronichthys ritteri	Pleuronectidae	SL		OL	OW	47 - 196	1.6 - 4.5	15	15	16	0
teleost	Pleuronichthys verticalis	Pleuronectidae	SL		OL	OW	94 - 194	2.5 - 2.5	1	1	4	0
teleost	Porichthys myriaster	Batrachoididae			OL	OW		3.5 - 13.8	0	21	0	0
teleost	Porichthys notatus	Batrachoididae			OL	OW		1.6 - 11.1	0	48	0	0
teleost	Prionotus stephanophrys	Triglidae	SL		OL	OW	57 - 295	2.3 - 10.6	4	11	0	0
teleost	Protomyctophum crockeri	Myctophidae	SL	TL	OL	OW	20 - 53	1 - 2.6	6	44	19	18
teleost	Radulinus asprellus	Cottidae	SL	TL	OL	OW	45 - 113	2.1 - 4.3	0	37	39	39
teleost	Rathbunella hypoplecta	Bathymasteridae	SL	TL	OL	OW	78 - 180	2.2 - 3.5	10	10	11	11
teleost	Rhinogobiops nicholsii	Gobiidae	SL	TL	OL	OW	22 - 77	0.9 - 3.3	5	47	48	48
teleost	Ruscarius creaseri	Cottidae	SL	TL	OL	OW	24 - 61	2 - 3.3	1	11	30	30
teleost	Sarda chiliensis	Scombridae	SL	FL	OL	OW	38 - 256	3.3 - 8.1	0	17	35	35
teleost	Sardinops sagax	Clupeidae	SL	FL	OL	OW	45 - 252	1.5 - 4.8	312	261	390	57
teleost	Scomber japonicus	Scombridae	SL	FL	OL	OW	52 - 406	1.1 - 6.6	223	242	279	36

Prey type	Species	Family	L1	L2	P1	P2	Range L1 (mm)	Range P1 (mm)	N L1 v P1	N P1 v P2	N Wt v L1	N L1 v L2
teleost	Scopelengys tristis	Neoscopelidae	SL		OL	OW	58 - 172	1.5 - 3.2	4	10	0	0
teleost	Sebastes aurora	Sebastidae			OL	OW		10.2 - 15.7	0	8	0	0
teleost	Sebastes caurinus	Sebastidae	SL	TL	OL	OW	28 - 265	5 - 17	0	17	41	41
teleost	Sebastes dallii	Sebastidae	SL	TL			42 - 160		0	0	53	51
teleost	Sebastes diploproa	Sebastidae	SL	TL	OL	OW	40 - 235	3.1 - 16.7	5	25	43	34
teleost	Sebastes elongatus	Sebastidae	SL	TL	OL	OW	68 - 246	2.5 - 15	0	16	39	39
teleost	Sebastes ensifer	Sebastidae	SL	TL	OL	OW	25 - 182	5.6 - 10.8	0	23	24	24
teleost	Sebastes entomelas	Sebastidae	SL	TL	OL	OW	42 - 179	13.6 - 18.7	0	8	22	22
teleost	Sebastes goodei	Sebastidae	SL	TL	OL	OW	31 - 280	1.2 - 19	20	41	65	47
teleost	Sebastes hopkinsi	Sebastidae	SL	TL	OL	OW	37 - 230	1.2 - 9.9	19	44	58	52
teleost	Sebastes jordani	Sebastidae	SL	TL	OL	OW	34 - 212	1.2 - 13.3	59	96	108	73
teleost	Sebastes lentiginosus	Sebastidae	SL	TL	OL	OW	79 - 188	8.4 - 9	0	5	11	11
teleost	Sebastes levis juvenile	Sebastidae	SL	TL	OL	OW	33 - 59	0.9 - 1.8	4	4	4	4
teleost	Sebastes miniatus	Sebastidae	SL	TL	OL	OW	41 - 248	4.9 - 17.7	0	17	45	44
teleost	Sebastes mystinus	Sebastidae	SL	TL	OL	OW	43 - 387	5 - 16.9	3	14	40	40
teleost	Sebastes paucispinis	Sebastidae	SL	TL	OL	OW	51 - 287	2.4 - 17.5	4	27	46	46
teleost	Sebastes proriger	Sebastidae	SL	TL	OL	OW	115 - 346	12.1 - 18.2	0	10	20	20
teleost	Sebastes rosenblatti	Sebastidae	SL		OL	OW	91 - 135	5.6 - 7.5	3	3	3	0
teleost	Sebastes rufus	Sebastidae	SL	TL	OL	OW	145 - 355	12.7 - 17.7	0	13	8	8
teleost	Sebastes saxicola	Sebastidae	SL	TL	OL	OW	43 - 202	4 - 15	0	31	60	59
teleost	Sebastes semicinctus	Sebastidae	SL	TL	OL	OW	33 - 157	1.6 - 8.2	6	28	61	57
teleost	Sebastes serranoides	Sebastidae	SL		OL	OW	113 - 197	6.2 - 18	3	23	0	0
teleost	Sebastes simulator	Sebastidae	SL	TL	OL	OW	122 - 235	8.7 - 8.7	0	1	10	10
teleost	Sebastes umbrosus	Sebastidae	SL	TL	OL	OW	82 - 215	5.9 - 12.8	0	11	16	16
teleost	Sebastes wilsoni	Sebastidae	SL	TL	OL	OW	75 - 171	4.8 - 9.5	0	12	24	24
teleost	Sebastolobus alascanus	Sebastidae			OL	OW		2.5 - 16.2	0	42	0	0
teleost	Semicossyphus pulcher	Labridae	SL	TL	OL	OW	93 - 230	6.3 - 9.9	0	8	16	16
teleost	Seriola dorsalis	Carangidae	SL		OL	OW	355 - 355	7.9 - 7.9	1	1	0	0
teleost	Seriphus politus	Sciaenidae	SL		OL	OW	60 - 260	3.8 - 11.7	22	34	33	0

							Range L1	Range P1	Ν	Ν	Ν	Ν
Prey type	Species	Family	L1	L2	P1	P2	(mm)	(mm)	L1 v P1	P1 v P2	Wt v L1	L1 v L2
teleost	Sphyraena argentea	Sphyraenidae	SL		OL	OW	160 - 730	5.6 - 18.3	7	24	5	0
teleost	Stenobrachius leucopsarus	Myctophidae	SL		OL	OW	37 - 86	0.7 - 2	44	75	57	0
teleost	Strongylura exilis	Belonidae			OL	OW		2.5 - 6	0	8	0	0
teleost	Symbolophorus californiensis	Myctophidae	SL		OL	OW	44 - 102	1.3 - 5	56	98	58	0
teleost	Symphurus atricauda	Cynoglossidae			OL	OW		2.2 - 2.6	0	8	0	0
teleost	Synodus lucioceps	Synodontidae	SL	FL	OL	OW	48 - 465	2.2 - 8.8	2	19	47	47
teleost	Tarletonbeania crenularis	Myctophidae	SL		OL	OW	35 - 72	1.1 - 2.1	24	47	30	0
teleost	Tetragonurus cuvieri	Tetragonuridae	SL	FL	OL	OW	46 - 300	1.2 - 3.7	4	10	12	9
teleost	Thaleichthys pacificus	Osmeridae	SL		OL	OW	80 - 214	2 - 4.7	5	27	0	0
teleost	Trachurus symmetricus	Carangidae	SL	FL	OL	OW	30 - 320	1.4 - 11.2	113	142	197	49
teleost	Triphoturus mexicanus	Myctophidae	SL		OL	OW	28 - 66	0.9 - 1.5	0	14	51	0
teleost	Xeneretmus ritteri	Agonidae	SL	TL	OL	OW	117 - 140	3.6 - 5.1	0	10	9	9
teleost	Xeneretmus triacanthus	Agonidae	SL	TL	OL	OW	71 - 200	3.1 - 4.6	0	11	36	36
teleost	Zalembius rosaceus	Embiotocidae	SL		OL	OW	113 - 117	2.1 - 7.6	0	32	3	0
teleost	Zaniolepis frenata	Zaniolepididae	SL		OL	OW	50 - 212	3.8 - 5.6	2	12	52	0
teleost	Zaniolepis latipinnis	Zaniolepididae	SL		OL	OW	52 - 177	1.1 - 5.1	2	21	40	0
tunicate	Pyrosoma atlanticum	Pyrosomatidae	TSL		TSL		20 - 230	20 - 230	61	0	61	0

Table 3. Regression summaries for prey size and hard part dimensions, for documented prey of California sea lions in the Southern California Bight and for prey species used in captive feeding studies of California sea lions. Some species for which regression relationships based on higher sample sizes were already available were omitted. Taxonomic level of data aggregation for regression, response (y) and independent (x) variables, with abbreviations defined in Table 1, intercept (b₀), slope (b₁), and respective standard errors (seb0, seb1), coefficient of determination (R²), and sample size (n). Regressions of weight (Wt) versus length are ln-ln; all others are simple linear regressions. Residual variances for bias-correction in back-transformation of ln-ln regressions are available online (see Data Accessibility). Units are mm (lengths) and g (Wt). Data for *O. tuberculata* regressions were taken from Salman and Akalin (2012). See Table 2 for additional external data sources.

Taxon	У	X	b ₀	b 1	se _{b0}	se _{b1}	R ²	n	Р
Anoplopoma fimbria	OL	OW	-2.990	3.922	0.50	0.18	0.949	26	< 0.0001
Argentina sialis	OL	OW	-0.070	1.534	0.068	0.034	0.989	25	< 0.0001
	SL	OL	0	36.21	_	0.94	0.999	3	0.0007
	Wt	SL	-12.950	3.244	0.27	0.058	0.985	50	< 0.0001
Artedius notospilotus	OL	OW	0	2.042	_	0.033	0.996	17	< 0.0001
	SL	OL	0	24.73	_	0.48	0.997	8	< 0.0001
	Wt	SL	-11.738	3.236	0.47	0.11	0.966	34	< 0.0001
Atherinopsidae	OL	OW	-0.899	1.767	0.18	0.063	0.910	80	< 0.0001
	SL	OL	-13.197	42.18	4.5	1.1	0.983	29	< 0.0001
	Wt	SL	-10.606	2.849	0.36	0.072	0.988	21	< 0.0001
Batoidea	TL	THW	0	573.1	_	24.	0.971	18	< 0.0001
	Wt	TL	-12.824	3.073	0.37	0.064	0.979	50	< 0.0001
Ceratoscopelus townsendi	OL	OW	-0.246	1.784	0.17	0.11	0.808	65	< 0.0001
	SL	OL	21.955	14.08	8.2	3.1	0.513	22	0.0002
	Wt	SL	-10.552	2.841	1.9	0.48	0.628	23	< 0.0001
Cheilopogon pinnatibarbatus	OL	OW	0	2.467	-	0.091	0.989	9	< 0.0001
	SL	OL	0	32.96	-	0.13	_	2	0.0024
	Wt	SL	-12.911	3.246	0.17	0.033	0.998	18	< 0.0001
Chilara taylori	OL	OW	-0.344	1.650	0.15	0.035	0.985	37	< 0.0001
Chromis punctipinnis	OL	OW	-0.956	2.251	0.42	0.14	0.894	31	< 0.0001
	SL	OL	0	25.07	—	0.41	0.996	17	< 0.0001
	Wt	SL	-11.389	3.204	0.22	0.048	0.988	57	< 0.0001
Citharichthys sordidus	OL	OW	-0.339	1.088	0.19	0.040	0.973	23	< 0.0001
	SL	OL	-32.407	42.04	5.4	1.7	0.959	27	< 0.0001
	Wt	SL	-12.787	3.327	0.23	0.053	0.994	27	< 0.0001
Citharichthys stigmaeus	OL	OW	-0.185	1.174	0.10	0.041	0.969	29	< 0.0001
	SL	OL	0	30.73	_	0.85	0.994	9	< 0.0001
	Wt	SL	-11.372	3.069	0.82	0.19	0.971	10	< 0.0001
Clupea pallasii	OL	OW	-0.438	2.469	0.23	0.13	0.892	45	< 0.0001
Cololabis saira	OL	OW	-0.012	1.588	0.077	0.079	0.921	37	< 0.0001
	SL	OL	-48.783	170.0	27.	19.	0.813	21	< 0.0001
	Wt	SL	-13.379	3.190	0.19	0.038	0.989	77	< 0.0001

Taxon	У	X	b ₀	b ₁	se _{b0}	se _{b1}	R ²	n	Р
Cranchia scabra	ML	URL	0	61.09	_	1.6	0.996	7	< 0.0001
	ML	LRL	0	61.23	_	1.7	0.995	7	< 0.0001
	Wt	ML	-9.602	2.758	2.3	0.51	0.831	8	0.0016
Cymatogaster aggregata	OL	OW	-0.316	1.610	0.21	0.057	0.894	96	< 0.0001
Diaphus theta	OW	OL	0.123	0.7564	0.041	0.020	0.969	49	< 0.0001
Doryteuthis opalescens	ML	URW	-7.779	93.03	3.4	2.8	0.894	128	< 0.0001
	Wt	ML	-9.053	2.640	0.13	0.028	0.985	134	< 0.0001
Embiotoca jacksoni	OL	OW	-1.982	2.410	0.42	0.11	0.942	29	< 0.0001
Engraulis mordax	OL	OW	-0.162	2.323	0.12	0.074	0.906	106	< 0.0001
	Wt	SL	-12.655	3.240	0.27	0.057	0.931	239	< 0.0001
Genyonemus lineatus	OL	OW	-4.448	2.840	0.60	0.13	0.959	24	< 0.0001
	SL	OL	0	18.66	_	0.39	0.995	13	< 0.0001
	Wt	SL	-11.533	3.151	0.48	0.10	0.990	12	< 0.0001
Girella nigricans	OL	OW	0	1.979	_	0.048	0.992	14	< 0.0001
	SL	OL	0	39.27	_	3.4	_	2	0.0555
Glyptocephalus zachirus	OL	OW	0.904	0.9491	0.45	0.088	0.714	49	< 0.0001
Halichoeres californica	OL	OW	-0.187	1.905	0.24	0.14	0.888	25	< 0.0001
	SL	OL	0	47.54	_	0.85	0.996	14	< 0.0001
	Wt	SL	-12.034	3.147	0.26	0.054	0.984	59	< 0.0001
Haliphron atlanticus	LHL	UHL	0	0.6369	_	—	_	1	—
	ML	UHL	0	6.068	_	-	-	1	—
	ML	LHL	0	9.527	_	—	_	1	—
Heterostichus rostratus	OL	OW	0	2.204	_	0.081	0.988	10	< 0.0001
	SL	OL	0	86.19	-	3.9	-	2	0.0289
··· · · · · ·	Wt	SL	-13.673	3.378	0.29	0.056	0.993	29	< 0.0001
Hypocritichthys analis	OL	OW	-1.928	2.246	0.62	0.18	0.871	25	< 0.0001
	SL	OL	0	16.50	-	0.18	1.000	4	< 0.0001
T 1 1 1	Wt	SL	-10.009	2.844	0.12	0.029	0.996	39	< 0.0001
Icelinus filamentosus	OL	Ow OI	-1.906	2.499	0.58	0.15	0.907	31	< 0.0001
			0	21.28	-	-	-	1	-
	wt		-11.900	3.210	0.18	0.038	0.995	30 22	< 0.0001
Icicntnys lockingtoni		Ow OI	-0.697	2.921	0.21	0.078	0.980	22	< 0.0001
	SL W4		0	25.78	-	1.2	0.982	9 5 A	< 0.0001
I ama ama ata a mittani	WI OI		-10./51	2.894	0.25	0.058	0.980	54 22	< 0.0001
Lampanyctus ritteri		Ow OI	-0.059	0.8299	0.11	0.070	0.821	33 6	< 0.0001
			U 11.156	00.80	-	3.3 0.061	0.988	54	< 0.0001
Lantopottus annatus			-11.130	2.802	0.20	0.001	0.977	34 20	< 0.0001
Leptoconus armans			-0.432	2.210 1.690	0.35	0.17	0.000	50 17	< 0.0001
Lesualops ringens	OL CI	OW	0	1.088	_	0.015	0.999	1 / 5	< 0.0001
	SL W/+	OL SI	17.020	13.43 3.600	-	2.0 0.10	0.993	ل 21	< 0.0001
	wt		-17.020	5.090 2.179	0.48	0.10	0.979	31 20	< 0.0001
Leurogiossus stildius	UL	UW	-0.000	3.1/8	0.27	0.27	0.799	38	< 0.0001

Taxon	у	X	b ₀	\mathbf{b}_1	se _{b0}	se _{b1}	\mathbb{R}^2	n	Р
Leuroglossus stilbius	SL	OL	0	28.32	_	0.29	0.999	14	< 0.0001
	Wt	SL	-14.114	3.488	0.61	0.14	0.943	38	< 0.0001
Lycodes cortezianus	OL	OW	0	1.468	_	0.018	0.998	14	< 0.0001
Lycodes pacificus	OL	OW	0	1.657	_	0.033	0.996	10	< 0.0001
	Wt	SL	-12.582	2.999	0.41	0.082	0.968	46	< 0.0001
Lyopsetta exilis	OL	OW	0.013	1.433	0.20	0.072	0.887	53	< 0.0001
Medialuna californiensis	Wt	SL	-9.513	2.811	0.57	0.11	0.857	117	< 0.0001
	OL	OW	-0.110	2.163	0.42	0.13	0.696	124	< 0.0001
	SL	OL	24.480	27.52	11.	1.6	0.738	113	< 0.0001
Merluccius productus	OL	OW	-1.930	2.963	0.27	0.055	0.955	139	< 0.0001
	SL	OL	-37.331	23.82	5.2	0.47	0.927	205	< 0.0001
	Wt	SL	-10.768	2.809	0.10	0.018	0.982	459	< 0.0001
Microstomus pacificus	OL	OW	-0.736	1.919	0.24	0.095	0.910	42	< 0.0001
Octopus spp.	ML	UHL	0	15.96	_	0.66	0.993	5	< 0.0001
	ML	LHL	0	23.48	_	1.2	0.990	5	< 0.0001
	Wt	ML	-11.616	3.916	2.6	0.67	0.918	5	0.0102
Ocythoe tuberculata	ML	UHL	0	12.62	_	0.54	0.979	13	< 0.0001
	ML	LHL	0	16.65	_	0.65	0.979	15	< 0.0001
	Wt	ML	-5.109	2.331	1.1	0.21	0.886	18	< 0.0001
Oncorhynchus gorbuscha	OL	OW	-0.104	1.439	0.057	0.028	0.908	272	< 0.0001
	SL	OL	-63.063	158.1	23.	7.5	0.691	201	< 0.0001
	Wt	SL	-11.225	2.979	0.054	0.0093	0.997	331	< 0.0001
Oncorhynchus mykiss	OL	OW	0.440	1.464	0.13	0.060	0.905	64	< 0.0001
	SL	OL	-157.546	101.0	23.	6.7	0.821	52	< 0.0001
	Wt	SL	-11.283	2.995	0.37	0.070	0.972	55	< 0.0001
Onychoteuthis borealijaponica	ML	URL	10.208	41.00	8.8	2.5	0.845	52	< 0.0001
	ML	LRL	-19.893	50.99	7.1	2.1	0.922	53	< 0.0001
	Wt	ML	-10.005	2.867	0.15	0.029	0.994	55	< 0.0001
Ophiodon elongatus	OL	OW	-1.310	2.910	0.45	0.13	0.961	21	< 0.0001
	Wt	SL	-13.105	3.258	0.21	0.043	0.995	29	< 0.0001
Oxylebius pictus	OL	OW	0.399	1.806	0.31	0.19	0.836	20	< 0.0001
	SL	OL	0	33.85	_	1.7	0.988	6	< 0.0001
	Wt	SL	-11.298	3.097	0.12	0.028	0.997	40	< 0.0001
Paralabrax clathratus	OL	OW	0	2.581	_	0.039	0.997	15	< 0.0001
	SL	OL	0	27.12	_	0.42	0.997	13	< 0.0001
	Wt	SL	-10.623	2.960	0.15	0.032	0.996	35	< 0.0001
Parophrys vetulus	OL	OW	-0.985	2.056	0.30	0.081	0.919	59	< 0.0001
Peprilus simillimus	OL	OW	-0.428	2.212	0.55	0.24	0.758	30	< 0.0001
	SL	OL	0	25.41	_	0.50	0.995	14	< 0.0001
	Wt	SL	-10.844	3.065	0.84	0.17	0.957	16	< 0.0001
Phanerodon spp.	OL	OW	-2.522	2.288	0.43	0.098	0.893	67	< 0.0001
	SL	OL	0	22.19	_	0.40	0.996	13	< 0.0001

Taxon	У	Х	\mathbf{b}_0	b 1	se _{b0}	se _{b1}	R ²	n	Р
Phanerodon spp.	Wt	SL	-11.444	3.219	1.1	0.21	0.961	12	< 0.0001
Physiculus rastrelliger	OL	OW	0	2.598	_	0.047	0.995	17	< 0.0001
	SL	OL	0	20.23	_	0.33	0.999	5	< 0.0001
	Wt	SL	-12.708	3.207	0.24	0.049	0.987	58	< 0.0001
Pleuroncodes planipes	Wt	DCL	-5.050	2.514	0.32	0.12	0.914	41	< 0.0001
Porichthys notatus	OL	OW	-1.259	1.537	0.22	0.045	0.962	48	< 0.0001
Protomyctophum crockeri	OL	OW	0.170	1.006	0.057	0.032	0.959	44	< 0.0001
	SL	OL	0	17.21	_	0.12	1.000	6	< 0.0001
	Wt	SL	-14.371	3.932	0.91	0.26	0.932	19	< 0.0001
Pyrosoma atlanticum	Wt	TSL	-5.880	1.867	0.21	0.051	0.958	61	< 0.0001
Rathbunella hypoplecta	OL	OW	0	2.527	_	0.050	0.996	10	< 0.0001
	SL	OL	0	38.30	_	0.71	0.997	10	< 0.0001
	Wt	SL	-11.273	2.943	1.2	0.25	0.939	11	< 0.0001
Rhinogobiops nicholsii	OL	OW	-0.626	1.497	0.087	0.041	0.967	47	< 0.0001
	SL	OL	0	24.83	_	0.22	1.000	5	< 0.0001
	Wt	SL	-11.935	3.201	0.17	0.042	0.992	48	< 0.0001
Ruscarius creaseri	OL	OW	0	2.172	_	0.028	0.998	11	< 0.0001
	SL	OL	0	18.19	_	-	-	1	_
	Wt	SL	-10.994	3.096	0.23	0.062	0.989	30	< 0.0001
Sardinops sagax	OL	OW	-0.390	2.689	0.079	0.060	0.886	261	< 0.0001
	SL	OL	-48.932	71.30	3.5	1.2	0.924	312	< 0.0001
	Wt	SL	-12.093	3.126	0.074	0.015	0.991	390	< 0.0001
Scomber japonicus	OL	OW	0.251	2.320	0.086	0.051	0.896	242	< 0.0001
	SL	OL	-54.673	72.45	6.4	1.6	0.908	223	< 0.0001
	Wt	SL	-12.096	3.129	0.11	0.020	0.989	279	< 0.0001
Sebastes diploproa	OL	OW	-0.181	1.576	0.31	0.043	0.983	25	< 0.0001
	SL	OL	0	15.01	_	0.30	0.998	5	< 0.0001
	Wt	SL	-10.842	3.069	0.13	0.029	0.996	43	< 0.0001
Sebastes goodei	OL	OW	-1.544	2.337	0.25	0.052	0.981	41	< 0.0001
	SL	OL	9.098	17.82	3.0	0.45	0.989	20	< 0.0001
	Wt	SL	-11.436	3.098	0.14	0.029	0.994	65	< 0.0001
Sebastes hopkinsi	OL	OW	-0.472	2.184	0.095	0.033	0.990	44	< 0.0001
	SL	OL	0	21.99	_	0.33	0.996	19	< 0.0001
	Wt	SL	-11.388	3.120	0.12	0.027	0.996	58	< 0.0001
Sebastes jordani	OL	OW	-0.233	2.058	0.073	0.020	0.991	96	< 0.0001
	SL	OL	15.993	17.04	1.6	0.26	0.987	59	< 0.0001
	Wt	SL	-11.528	3.064	0.13	0.027	0.992	108	< 0.0001
Sebastes paucispinis	OL	OW	-0.644	2.169	0.26	0.048	0.988	27	< 0.0001
	Wt	SL	-11.142	3.021	0.19	0.041	0.992	46	< 0.0001
Sebastes semicinctus	OL	OW	-0.207	1.893	0.19	0.054	0.980	28	< 0.0001
	SL	OL	0	19.09	-	0.53	0.996	6	< 0.0001
	Wt	SL	-10.874	3.021	0.14	0.031	0.994	61	< 0.0001

Table 3	(continued).
---------	--------------

Taxon	У	x	\mathbf{b}_0	$\mathbf{b_1}$	se _{b0}	se _{b1}	R ²	n	Р
Sebastolobus alascanus	OL	OW	1.777	1.272	0.50	0.076	0.874	42	< 0.0001
Seriphus politus	OL	OW	-2.766	2.231	0.42	0.097	0.942	34	< 0.0001
	SL	OL	-35.671	23.96	4.7	0.70	0.983	22	< 0.0001
	Wt	SL	-11.627	3.101	0.26	0.054	0.991	33	< 0.0001
Sphyraena argentea	OL	OW	-0.975	3.406	0.77	0.19	0.933	24	< 0.0001
	SL	OL	0	36.56	_	2.7	0.967	7	< 0.0001
	Wt	SL	-10.712	2.735	0.93	0.17	0.989	5	0.0005
Stenobrachius leucopsarus	OW	OL	0.105	1.057	0.058	0.041	0.902	75	< 0.0001
Symbolophorus californiensis	OL	OW	-0.204	1.415	0.070	0.025	0.970	98	< 0.0001
	SL	OL	17.452	17.09	3.6	0.92	0.864	56	< 0.0001
	Wt	SL	-11.903	3.121	0.51	0.12	0.929	58	< 0.0001
Symphurus atricauda	OL	OW	0	0.8765	_	0.017	0.997	8	< 0.0001
Synodus lucioceps	OL	OW	0	2.305	_	0.082	0.978	19	< 0.0001
	SL	OL	0	51.87	_	3.3	_	2	0.0398
	Wt	SL	-13.445	3.303	0.14	0.028	0.997	47	< 0.0001
Tarletonbeania crenularis	OL	OW	-0.229	1.445	0.085	0.066	0.915	47	< 0.0001
	SL	OL	4.513	31.61	3.2	2.1	0.912	24	< 0.0001
	Wt	SL	-12.273	3.234	0.36	0.092	0.978	30	< 0.0001
Tetragonurus cuvieri	OL	OW	0	1.707	_	0.061	0.989	10	< 0.0001
	SL	OL	0	88.05	_	2.2	0.998	4	< 0.0001
	Wt	SL	-10.760	2.802	0.24	0.051	0.997	12	< 0.0001
Trachurus symmetricus	OL	OW	-0.291	2.294	0.12	0.043	0.953	142	< 0.0001
	SL	OL	-25.627	39.12	5.1	0.93	0.941	113	< 0.0001
	Wt	SL	-11.490	3.006	0.16	0.031	0.980	197	< 0.0001
Triphoturus mexicanus	OL	OW	0	1.074	_	0.016	0.997	14	< 0.0001
Zalembius rosaceus	OL	OW	-0.946	1.825	0.33	0.095	0.924	32	< 0.0001
Zaniolepis spp.	OL	OW	-0.750	2.638	0.27	0.15	0.908	33	< 0.0001
	SL	OL	0	35.02	_	1.6	0.994	4	0.0002
	Wt	SL	-12.673	3.182	0.18	0.038	0.987	92	< 0.0001

Table 4. Regression summaries for otolith morphometrics as related to otolith length (OL; mm), for documented prey of California sea lions in the Southern California Bight and for prey species used in captive feeding studies of California sea lions. Taxonomic level of data aggregation for regression, response variable (y), intercept (b₀), slope (b₁), and respective standard errors (seb₀, seb₁), coefficient of determination (R²), and sample size (n). Regressions of otolith weight (Wt; mg) versus OL are ln-ln; all others are simple linear regressions. Residual variances for biascorrection in back-transformation of ln-ln regressions are available online (see Data Accessibility). Additional abbreviations and units are OW = otolith width (mm), P = otolith perimeter (mm), PA = otolith projected area (mm²), and Wt = otolith weight (mg). See Methods for description of otolith metrics.

Taxon	У	\mathbf{b}_0	\mathbf{b}_1	se _{b0}	se _{b1}	R ²	n	р
Agonidae	OP	-1.084	2.934	0.62	0.14	0.956	21	< 0.0001
	OPA	-0.966	1.997	0.19	0.13	0.926	21	< 0.0001
	OW	-0.215	0.6131	0.27	0.063	0.832	21	< 0.0001
	OWt	-1.347	2.480	0.35	0.24	0.846	21	< 0.0001
Anoplopoma fimbria	OP	1.162	2.317	0.22	0.028	0.996	26	< 0.0001
	OPA	-0.607	1.630	0.053	0.027	0.993	26	< 0.0001
	OW	0.856	0.2421	0.088	0.011	0.949	26	< 0.0001
	OWt	-2.358	2.639	0.13	0.066	0.985	26	< 0.0001
Argentina sialis	OP	-0.086	2.930	0.11	0.036	0.997	25	< 0.0001
	OPA	-0.697	1.893	0.021	0.020	0.997	25	< 0.0001
	OW	0.066	0.6445	0.043	0.014	0.989	25	< 0.0001
	OWt	-1.813	2.404	0.045	0.044	0.992	25	< 0.0001
Artedius notospilotus	OP	0	2.623	_	0.020	0.999	17	< 0.0001
	OPA	-0.859	1.892	0.15	0.090	0.967	17	< 0.0001
	OW	0	0.4876	_	0.0078	0.996	17	< 0.0001
	OWt	-1.625	2.571	0.24	0.15	0.953	17	< 0.0001
Atherinopsidae	OP	0.794	2.822	0.16	0.037	0.990	63	< 0.0001
	OPA	-0.334	1.769	0.035	0.024	0.989	63	< 0.0001
	OW	0.856	0.4912	0.082	0.019	0.919	63	< 0.0001
	OWt	-1.638	2.838	0.098	0.069	0.965	63	< 0.0001
Brosmophycis marginata	OP	0	2.494	_	0.011	1.000	17	< 0.0001
	OPA	-1.036	1.979	0.059	0.029	0.997	17	< 0.0001
	OW	0	0.4448	_	0.0052	0.998	17	< 0.0001
	OWt	-1.819	2.819	0.16	0.079	0.988	17	< 0.0001
Ceratoscopelus townsendi	OP	0.449	2.561	0.16	0.067	0.959	65	< 0.0001
	OPA	-0.543	1.713	0.043	0.048	0.953	65	< 0.0001
	OW	0.399	0.4528	0.069	0.028	0.808	65	< 0.0001
	OWt	-1.249	2.162	0.075	0.084	0.913	65	< 0.0001
Cheilopogon pinnatibarbatus	OP	0	2.655	_	0.038	0.999	7	< 0.0001
	OPA	0.372	1.296	1.2	0.53	0.548	7	0.0569
	OW	0	0.4010	_	0.015	0.989	9	< 0.0001

Table 4	(continued).
---------	--------------

Taxon	У	b ₀	b 1	se _{b0}	se _{b1}	R ²	n	р
Cheilopogon pinnatibarbatus	OWt	-0.119	1.809	2.7	1.2	0.316	7	0.1894
Chilara taylori	OP	0.387	2.692	0.14	0.020	0.998	37	< 0.0001
	OPA	-0.661	1.953	0.030	0.016	0.998	37	< 0.0001
	OW	0.268	0.5967	0.088	0.013	0.985	37	< 0.0001
	OWt	-1.500	3.026	0.080	0.044	0.993	37	< 0.0001
Chromis punctipinnis	OP	1.003	2.526	0.32	0.056	0.986	31	< 0.0001
	OPA	-0.556	1.732	0.056	0.033	0.990	31	< 0.0001
	OW	0.688	0.3971	0.15	0.025	0.894	31	< 0.0001
	OWt	-1.725	2.567	0.14	0.081	0.972	31	< 0.0001
Citharichthys sordidus	OP	0.577	3.207	0.27	0.056	0.994	23	< 0.0001
	OPA	-0.116	1.866	0.037	0.025	0.996	23	< 0.0001
	OW	0.422	0.8946	0.16	0.033	0.973	23	< 0.0001
	OWt	-0.528	2.388	0.078	0.053	0.990	23	< 0.0001
Citharichthys stigmaeus	OP	0.483	3.010	0.15	0.054	0.991	29	< 0.0001
	OPA	-0.248	1.859	0.028	0.028	0.994	29	< 0.0001
	OW	0.227	0.8253	0.078	0.028	0.969	29	< 0.0001
	OWt	-0.762	2.269	0.060	0.060	0.981	29	< 0.0001
Clupea pallasii	OP	0.618	2.791	0.53	0.13	0.909	45	< 0.0001
	OPA	-0.790	1.747	0.047	0.035	0.983	45	< 0.0001
	OW	0.345	0.3613	0.075	0.019	0.892	45	< 0.0001
	OWt	-2.233	2.540	0.11	0.085	0.954	45	< 0.0001
Cololabis saira	OP	0.045	2.810	0.11	0.070	0.979	37	< 0.0001
	OPA	-0.710	1.891	0.023	0.052	0.974	37	< 0.0001
	OW	0.082	0.5799	0.044	0.029	0.921	37	< 0.0001
	OWt	-2.004	2.386	0.039	0.086	0.957	37	< 0.0001
Cymatogaster aggregata	OP	0.747	2.638	0.21	0.037	0.981	96	< 0.0001
	OPA	-0.464	1.793	0.040	0.023	0.985	96	< 0.0001
	OW	0.570	0.5551	0.11	0.020	0.894	96	< 0.0001
	OWt	-1.160	2.396	0.071	0.041	0.973	96	< 0.0001
Diaphus theta	OP	0.101	3.160	0.10	0.048	0.989	49	< 0.0001
	OPA	-0.476	1.930	0.017	0.024	0.993	49	< 0.0001
	OW	0.123	0.7564	0.041	0.020	0.969	49	< 0.0001
	OWt	-1.307	2.417	0.027	0.037	0.989	49	< 0.0001
Embiotoca jacksoni	OP	0.363	2.816	0.54	0.077	0.980	29	< 0.0001
	OPA	-0.307	1.650	0.054	0.029	0.992	29	< 0.0001
	OW	0.982	0.3911	0.13	0.019	0.942	29	< 0.0001
	OWt	-1.297	2.438	0.12	0.063	0.982	29	< 0.0001
Engraulis mordax	OP	-0.108	2.715	0.21	0.057	0.956	106	< 0.0001
	OPA	-0.838	1.738	0.030	0.023	0.982	106	< 0.0001

Taxon	У	\mathbf{b}_0	\mathbf{b}_1	se _{b0}	se _{b1}	\mathbb{R}^2	n	р
Engraulis mordax	OW	0.219	0.3899	0.046	0.012	0.906	106	< 0.0001
	OWt	-2.385	2.675	0.083	0.064	0.945	105	< 0.0001
Genyonemus lineatus	OP	2.297	2.366	0.30	0.032	0.996	24	< 0.0001
	OPA	-0.197	1.668	0.051	0.024	0.996	24	< 0.0001
	OW	1.695	0.3377	0.14	0.015	0.959	24	< 0.0001
	OWt	-1.000	2.535	0.14	0.063	0.987	24	< 0.0001
Girella nigricans	OP	0	2.883	_	0.026	0.999	14	< 0.0001
	OPA	-0.880	1.934	0.084	0.046	0.993	14	< 0.0001
	OW	0	0.5015	_	0.012	0.992	14	< 0.0001
	OWt	-2.316	2.997	0.23	0.13	0.980	14	< 0.0001
Glyptocephalus zachirus	OP	1.420	2.995	0.64	0.11	0.940	49	< 0.0001
	OPA	-0.259	1.946	0.11	0.066	0.949	49	< 0.0001
	OW	0.771	0.7521	0.40	0.069	0.714	49	< 0.0001
	OWt	-0.988	2.771	0.22	0.13	0.910	49	< 0.0001
Halichoeres californica	OP	-0.470	3.029	0.44	0.15	0.949	25	< 0.0001
	OPA	-0.638	1.743	0.055	0.051	0.980	25	< 0.0001
	OW	0.271	0.4661	0.10	0.035	0.888	25	< 0.0001
	OWt	-1.425	2.171	0.090	0.083	0.967	25	< 0.0001
Heterostichus rostratus	OP	0	2.795	_	0.043	0.998	10	< 0.0001
	OPA	-0.476	1.305	0.12	0.11	0.949	10	< 0.0001
	OW	0	0.4483	_	0.017	0.988	10	< 0.0001
	OWt	-1.435	1.894	0.18	0.17	0.940	10	< 0.0001
Hypocritichthys analis	OP	1.562	2.455	0.37	0.062	0.985	25	< 0.0001
	OPA	-0.214	1.594	0.10	0.059	0.970	25	< 0.0001
	OW	1.190	0.3878	0.18	0.031	0.871	25	< 0.0001
	OWt	-1.329	2.508	0.17	0.099	0.965	25	< 0.0001
Hypomesus pretiosus	OP	1.629	2.657	1.1	0.26	0.839	22	< 0.0001
	OPA	-0.137	1.542	0.25	0.17	0.796	22	< 0.0001
	OW	1.581	0.2550	0.33	0.079	0.343	22	0.0042
	OWt	-1.629	2.450	0.39	0.27	0.800	22	< 0.0001
Icelinus filamentosus	OP	0.228	2.548	0.45	0.057	0.986	30	< 0.0001
	OPA	-0.529	1.749	0.091	0.045	0.982	30	< 0.0001
	OW	1.053	0.3630	0.17	0.022	0.907	31	< 0.0001
	OWt	-1.207	2.486	0.26	0.13	0.930	30	< 0.0001
Icichthys lockingtoni	OP	3.900	2.046	0.83	0.12	0.940	22	< 0.0001
	OPA	-1.216	1.986	0.062	0.033	0.995	22	< 0.0001
	OW	0.271	0.3376	0.064	0.0090	0.986	22	< 0.0001
	OWt	-2.981	2.692	0.15	0.079	0.983	22	< 0.0001
Lampanyctus ritteri	OP	0.557	3.483	0.22	0.18	0.922	33	< 0.0001

Table 4	(continued).
---------	------------	----

Taxon	У	\mathbf{b}_0	b ₁	se _{b0}	se _{b1}	R ²	n	р
Lampanyctus ritteri	OPA	0.082	1.714	0.027	0.089	0.923	33	< 0.0001
	OW	0.322	0.9893	0.10	0.083	0.821	33	< 0.0001
	OWt	-0.325	2.250	0.049	0.16	0.862	33	< 0.0001
Leptocottus armatus	OP	2.004	2.433	0.70	0.11	0.950	30	< 0.0001
	OPA	-0.762	1.839	0.10	0.055	0.976	30	< 0.0001
	OW	0.587	0.3903	0.19	0.029	0.866	30	< 0.0001
	OWt	-1.796	2.599	0.20	0.11	0.955	30	< 0.0001
Lestidiops ringens	OP	0	3.166	_	0.024	0.999	17	< 0.0001
	OPA	-0.633	1.916	0.049	0.066	0.983	17	< 0.0001
	OW	0	0.5918	_	0.0051	0.999	17	< 0.0001
	OWt	-1.789	2.724	0.081	0.11	0.976	17	< 0.0001
Leuroglossus stilbius	OP	0.554	2.278	0.13	0.052	0.982	38	< 0.0001
	OPA	-0.994	1.598	0.049	0.053	0.961	38	< 0.0001
	OW	0.368	0.2515	0.053	0.021	0.799	38	< 0.0001
	OWt	-2.055	1.780	0.086	0.094	0.909	38	< 0.0001
Lycodes cortezianus	OP	0	3.018	_	0.032	0.999	14	< 0.0001
	OPA	-0.468	1.863	0.16	0.10	0.965	14	< 0.0001
	OW	0	0.6797	_	0.0084	0.998	14	< 0.0001
	OWt	-0.489	2.100	0.26	0.17	0.928	14	< 0.0001
Lycodes pacificus	OP	0	2.758	_	0.011	1.000	10	< 0.0001
	OPA	-0.771	1.940	0.17	0.13	0.966	10	< 0.0001
	OW	0	0.6011	_	0.012	0.996	10	< 0.0001
	OWt	-1.256	2.620	0.26	0.20	0.955	10	< 0.0001
Lyopsetta exilis	OP	0.471	2.730	0.23	0.057	0.978	53	< 0.0001
	OPA	-0.442	1.851	0.052	0.039	0.978	53	< 0.0001
	OW	0.298	0.6190	0.12	0.031	0.887	53	< 0.0001
	OWt	-0.879	2.402	0.14	0.11	0.911	53	< 0.0001
Mallotus villosus	OP	0.247	3.020	0.24	0.093	0.941	68	< 0.0001
	OPA	-0.680	1.823	0.052	0.055	0.943	68	< 0.0001
	OW	0.097	0.6448	0.069	0.027	0.896	68	< 0.0001
	OWt	-2.322	2.975	0.14	0.14	0.865	68	< 0.0001
Medialuna californiensis	OP	0	2.783	_	0.030	0.999	11	< 0.0001
	OPA	-0.415	1.685	0.35	0.18	0.911	11	< 0.0001
	OW	1.025	0.3218	0.13	0.019	0.696	124	< 0.0001
	OWt	-1.561	2.421	0.18	0.092	0.849	124	< 0.0001
Melamphaes lugubris	OP	-0.715	2.986	0.25	0.068	0.991	20	< 0.0001
	OPA	-0.811	1.908	0.030	0.024	0.997	20	< 0.0001
	OW	0.068	0.5148	0.039	0.011	0.992	20	< 0.0001
	OWt	-1.880	2.554	0.037	0.029	0.998	20	< 0.0001

Taxon	У	\mathbf{b}_0	\mathbf{b}_1	se _{b0}	se _{b1}	\mathbb{R}^2	n	р
Merluccius productus	OP	2.731	2.328	0.33	0.026	0.983	139	< 0.0001
	OPA	-0.967	1.865	0.029	0.012	0.994	139	< 0.0001
	OW	0.829	0.3223	0.075	0.0060	0.955	139	< 0.0001
	OWt	-2.448	2.633	0.045	0.019	0.993	139	< 0.0001
Microgadus proximus	OP	1.039	2.422	0.52	0.051	0.990	24	< 0.0001
	OPA	-1.123	1.949	0.030	0.014	0.999	24	< 0.0001
	OW	0.195	0.3632	0.079	0.0078	0.990	24	< 0.0001
	OWt	-2.414	2.853	0.078	0.035	0.997	24	< 0.0001
Microstomus pacificus	OP	0.545	2.643	0.23	0.054	0.983	42	< 0.0001
	OPA	-0.464	1.781	0.039	0.028	0.990	42	< 0.0001
	OW	0.569	0.4745	0.10	0.024	0.910	42	< 0.0001
	OWt	-1.246	2.565	0.10	0.074	0.968	42	< 0.0001
Oncorhynchus mykiss	OP	-1.034	3.051	0.30	0.083	0.956	64	< 0.0001
	OPA	-0.845	1.955	0.081	0.063	0.939	64	< 0.0001
	OW	-0.066	0.6182	0.093	0.025	0.905	64	< 0.0001
	OWt	-1.677	2.419	0.18	0.14	0.828	64	< 0.0001
Ophiodon elongatus	OP	0.640	2.590	0.42	0.049	0.993	21	< 0.0001
	OPA	-0.757	1.763	0.14	0.067	0.973	21	< 0.0001
	OW	0.557	0.3303	0.13	0.015	0.961	21	< 0.0001
	OWt	-2.192	2.696	0.32	0.16	0.940	21	< 0.0001
Oxylebius pictus	OP	-0.371	2.746	0.27	0.080	0.985	20	< 0.0001
	OPA	-0.917	1.872	0.10	0.086	0.963	20	< 0.0001
	OW	0.078	0.4629	0.16	0.048	0.836	20	< 0.0001
	OWt	-1.918	2.577	0.21	0.18	0.923	20	< 0.0001
Paralabrax clathratus	OP	0	2.538	-	0.043	0.996	15	< 0.0001
	OPA	-0.598	1.690	0.19	0.085	0.968	15	< 0.0001
	OW	0	0.3862	-	0.0059	0.997	15	< 0.0001
	OWt	-2.587	2.805	0.42	0.19	0.945	15	< 0.0001
Parophrys vetulus	OP	1.146	2.640	0.37	0.055	0.976	59	< 0.0001
	OPA	-0.429	1.775	0.051	0.028	0.986	59	< 0.0001
	OW	0.731	0.4471	0.12	0.018	0.919	59	< 0.0001
	OWt	-1.515	2.602	0.12	0.063	0.968	59	< 0.0001
Peprilus simillimus	OP	1.421	2.582	0.80	0.17	0.893	30	< 0.0001
	OPA	-0.472	1.620	0.12	0.075	0.944	30	< 0.0001
	OW	0.706	0.3425	0.17	0.037	0.758	30	< 0.0001
	OWt	-2.216	2.481	0.20	0.13	0.929	30	< 0.0001
Phanerodon spp.	OP	0.359	2.736	0.54	0.073	0.955	67	< 0.0001
	OPA	-0.200	1.656	0.056	0.029	0.981	67	< 0.0001
	OW	1.444	0.3903	0.12	0.017	0.893	67	< 0.0001

Taxon	У	\mathbf{b}_0	b 1	se _{b0}	se _{b1}	\mathbb{R}^2	n	р
Phanerodon spp.	OWt	-1.031	2.380	0.11	0.058	0.963	67	< 0.0001
Physiculus rastrelliger	OP	0	2.430	_	0.014	1.000	12	< 0.0001
	OPA	-1.355	1.932	0.30	0.15	0.941	12	< 0.0001
	OW	0	0.3829	_	0.0070	0.995	17	< 0.0001
	OWt	-2.212	2.981	0.37	0.19	0.962	12	< 0.0001
Porichthys notatus	OP	1.223	3.107	0.36	0.057	0.985	48	< 0.0001
	OPA	-0.066	1.762	0.030	0.017	0.996	48	< 0.0001
	OW	0.964	0.6262	0.12	0.018	0.962	48	< 0.0001
	OWt	-0.762	2.479	0.057	0.033	0.992	48	< 0.0001
Protomyctophum crockeri	OP	-0.109	3.279	0.095	0.048	0.991	44	< 0.0001
	OPA	-0.393	2.030	0.018	0.026	0.993	44	< 0.0001
	OW	-0.091	0.9533	0.059	0.030	0.959	44	< 0.0001
	OWt	-0.972	2.804	0.035	0.053	0.985	44	< 0.0001
Rathbunella hypoplecta	OP	0	2.412	_	0.011	1.000	10	< 0.0001
	OPA	-0.955	1.683	0.14	0.14	0.951	10	< 0.0001
	OW	0	0.3943	_	0.0078	0.996	10	< 0.0001
	OWt	-1.845	2.296	0.27	0.25	0.914	10	< 0.0001
Rhinogobiops nicholsii	OP	0.782	3.155	0.13	0.053	0.988	47	< 0.0001
	OPA	-0.113	1.740	0.021	0.023	0.992	47	< 0.0001
	OW	0.473	0.6461	0.045	0.018	0.967	47	< 0.0001
	OWt	-0.813	2.375	0.052	0.056	0.975	47	< 0.0001
Ruscarius creaseri	OP	0	2.481	_	0.011	1.000	11	< 0.0001
	OPA	-1.024	1.927	0.068	0.071	0.988	11	< 0.0001
	OW	0	0.4596	_	0.0059	0.998	11	< 0.0001
	OWt	-1.839	2.652	0.13	0.13	0.978	11	< 0.0001
Sardinops sagax	OP	0.166	2.670	0.093	0.033	0.990	66	< 0.0001
	OPA	-0.928	1.684	0.017	0.018	0.993	66	< 0.0001
	OW	0.276	0.3296	0.023	0.0073	0.886	261	< 0.0001
	OWt	-2.476	2.381	0.028	0.029	0.990	66	< 0.0001
Scomber japonicus	OP	0.037	2.673	0.15	0.040	0.977	105	< 0.0001
	OPA	-0.992	1.790	0.031	0.024	0.982	105	< 0.0001
	OW	0.073	0.3863	0.035	0.0085	0.896	242	< 0.0001
	OWt	-2.315	2.455	0.054	0.042	0.971	105	< 0.0001
Sebastes diploproa	OP	-1.975	3.110	0.58	0.052	0.994	25	< 0.0001
	OPA	-0.675	1.933	0.047	0.021	0.997	25	< 0.0001
	OW	0.224	0.6240	0.19	0.017	0.983	25	< 0.0001
	OWt	-1.508	2.759	0.11	0.047	0.993	25	< 0.0001
Sebastes goodei	OP	0.157	2.712	0.41	0.041	0.992	38	< 0.0001
	OPA	-0.649	1.813	0.060	0.027	0.992	38	< 0.0001

Taxon	У	\mathbf{b}_0	\mathbf{b}_1	se _{b0}	se _{b1}	\mathbb{R}^2	n	р
Sebastes goodei	OW	0.730	0.4200	0.090	0.0093	0.981	41	< 0.0001
	OWt	-1.564	2.538	0.11	0.052	0.985	38	< 0.0001
Sebastes hopkinsi	OP	-1.143	2.837	0.38	0.053	0.991	28	< 0.0001
	OPA	-0.838	1.891	0.071	0.037	0.990	28	< 0.0001
	OW	0.239	0.4534	0.040	0.0069	0.990	44	< 0.0001
	OWt	-1.852	2.629	0.18	0.091	0.970	28	< 0.0001
Sebastes jordani	OP	-0.115	2.678	0.22	0.028	0.992	78	< 0.0001
	OPA	-0.842	1.906	0.037	0.018	0.993	78	< 0.0001
	OW	0.142	0.4816	0.034	0.0047	0.991	96	< 0.0001
	OWt	-1.820	2.606	0.055	0.027	0.992	78	< 0.0001
Sebastes paucispinis	OP	-0.625	2.808	0.67	0.055	0.992	23	< 0.0001
	OPA	-0.814	1.887	0.055	0.023	0.997	23	< 0.0001
	OW	0.353	0.4555	0.11	0.010	0.988	27	< 0.0001
	OWt	-2.105	2.732	0.14	0.060	0.990	23	< 0.0001
Sebastes semicinctus	OP	-0.133	2.647	0.37	0.055	0.990	26	< 0.0001
	OPA	-0.772	1.899	0.070	0.037	0.991	26	< 0.0001
	OW	0.177	0.5174	0.095	0.015	0.980	28	< 0.0001
	OWt	-1.734	2.680	0.16	0.085	0.977	26	< 0.0001
Sebastolobus alascanus	OP	-6.855	3.856	1.7	0.17	0.925	42	< 0.0001
	OPA	-0.789	1.964	0.12	0.056	0.968	42	< 0.0001
	OW	-0.451	0.6869	0.41	0.041	0.874	42	< 0.0001
	OWt	-1.022	2.437	0.19	0.085	0.954	42	< 0.0001
Seriphus politus	OP	1.898	2.463	0.23	0.033	0.994	34	< 0.0001
	OPA	-0.141	1.672	0.046	0.024	0.993	34	< 0.0001
	OW	1.413	0.4225	0.13	0.018	0.942	34	< 0.0001
	OWt	-1.160	2.630	0.10	0.054	0.987	34	< 0.0001
Sphyraena argentea	OP	2.138	2.192	0.36	0.029	0.996	22	< 0.0001
	OPA	-0.950	1.799	0.076	0.031	0.994	22	< 0.0001
	OW	0.520	0.2739	0.20	0.016	0.933	24	< 0.0001
	OWt	-2.319	2.607	0.16	0.065	0.988	22	< 0.0001
Stenobrachius leucopsarus	OP	0.165	3.668	0.16	0.11	0.938	75	< 0.0001
	OPA	-0.050	1.928	0.019	0.050	0.954	75	< 0.0001
	OW	0.105	1.057	0.058	0.041	0.902	75	< 0.0001
	OWt	-0.662	2.613	0.029	0.076	0.941	75	< 0.0001
Symbolophorus californiensis	OP	0.703	2.784	0.12	0.031	0.988	98	< 0.0001
	OPA	-0.444	1.880	0.021	0.017	0.993	98	< 0.0001
	OW	0.221	0.6856	0.046	0.012	0.970	98	< 0.0001
	OWt	-1.084	2.312	0.036	0.028	0.986	98	< 0.0001
Symphurus atricauda	OP	0	3.551	_	0.044	0.999	8	< 0.0001

Table 4	(continu	ied).
---------	----------	-------

Taxon	У	\mathbf{b}_0	b ₁	se _{b0}	se _{b1}	R ²	n	р
Symphurus atricauda	OPA	-0.338	2.215	0.38	0.43	0.817	8	0.0021
	OW	0	1.138	_	0.022	0.997	8	< 0.0001
	OWt	-3.256	5.948	0.82	0.94	0.870	8	0.0007
Synodus lucioceps	OP	0	2.558	_	0.029	0.998	19	< 0.0001
	OPA	-0.576	1.662	0.058	0.036	0.992	19	< 0.0001
	OW	0	0.4242	_	0.015	0.978	19	< 0.0001
	OWt	-1.673	2.586	0.11	0.068	0.988	19	< 0.0001
Tarletonbeania crenularis	OP	0.612	2.794	0.12	0.072	0.971	47	< 0.0001
	OPA	-0.346	1.784	0.021	0.041	0.977	47	< 0.0001
	OW	0.253	0.6330	0.047	0.029	0.915	47	< 0.0001
	OWt	-1.177	1.896	0.034	0.068	0.945	47	< 0.0001
Tetragonurus cuvieri	OP	0	2.826	_	0.049	0.997	10	< 0.0001
	OPA	-0.564	1.651	0.091	0.090	0.977	10	< 0.0001
	OW	0	0.5793	_	0.021	0.989	10	< 0.0001
	OWt	-1.739	2.417	0.13	0.13	0.977	10	< 0.0001
Thaleichthys pacificus	OP	0.188	3.047	0.29	0.080	0.983	27	< 0.0001
	OPA	-0.564	1.767	0.038	0.030	0.993	27	< 0.0001
	OW	0.327	0.5642	0.063	0.018	0.976	27	< 0.0001
	OWt	-1.845	2.454	0.079	0.063	0.984	27	< 0.0001
Trachurus symmetricus	OP	-1.446	2.901	0.19	0.031	0.985	134	< 0.0001
	OPA	-0.831	1.802	0.027	0.016	0.990	134	< 0.0001
	OW	0.244	0.4157	0.047	0.0078	0.953	142	< 0.0001
	OWt	-2.315	2.643	0.071	0.041	0.970	134	< 0.0001
Triphoturus mexicanus	OP	0	3.306	_	0.027	0.999	14	< 0.0001
	OPA	-0.238	1.709	0.017	0.071	0.980	14	< 0.0001
	OW	0	0.9287	_	0.014	0.997	14	< 0.0001
	OWt	-0.880	2.403	0.037	0.15	0.952	14	< 0.0001
Xeneretmus ritteri	OP	0	2.720	_	0.020	0.999	10	< 0.0001
	OPA	-0.425	1.669	0.19	0.13	0.955	10	< 0.0001
	OW	0	0.5873	_	0.0059	0.999	10	< 0.0001
	OWt	-0.481	1.963	0.52	0.35	0.798	10	0.0005
Xeneretmus triacanthus	OP	0	2.638	_	0.027	0.999	11	< 0.0001
	OPA	-0.848	1.877	0.20	0.14	0.950	11	< 0.0001
	OW	0	0.5357	_	0.0087	0.997	11	< 0.0001
	OWt	-1.068	2.215	0.31	0.22	0.917	11	< 0.0001
Zalembius rosaceus	OP	0.573	2.789	0.42	0.078	0.977	32	< 0.0001
	OPA	-0.510	1.805	0.057	0.034	0.989	32	< 0.0001
	OW	0.737	0.5065	0.14	0.027	0.924	32	< 0.0001
	OWt	-1.540	2.646	0.091	0.056	0.987	32	< 0.0001

Appendix A. Paired Comparisons of Left and Right Sagittal Otoliths

Figure A1. Superimposed violin and one-dimensional scatter plots of normalized differences between left and right sagittal otolith length by species (i.e., $\frac{OL_L - OL_R}{0.5 * (OL_L + OL_R)}$, where OL_L and OL_R are left and right sagittal otolith lengths).

$(0.5 * (OL_L + OL_R))$	0.2 -	ſ.	\$	Л.	ł	. [*	i ()	[•	ĵ,	÷.	*		ŀ	ſ		r.	÷**-	-1		÷	•			1	2			Į	1.		1	7-			ź	0 •	×			
$(OL_L - OL_R)/$	-0.1 - -0.2 -	ľ			•	•]			•			•••		•r.	-	ť		*			-1	••	•••		•	, r		•]-					7	¥.				1
		Ammodytes hexapterus	Amphistichus argenteus	Argentina sialis	Artedius notospilotus	Atherinops affinis	Atherinopsis californiensis	Ceratoscopelus townsendi	Cheilopogon pinnatibarbatus	Chilara taylori	Chitonotus pugetensis	Chromis punctipinnis	Citharichthys sordidus	Citharichthys stigmaeus	Clupea pallasii	Cololabis saira	Cymatogaster aggregata	Diaphus theta	Embiotoca jacksoni	Engraulis mordax	Genyonemus lineatus	Girella nigricans	Halichoeres californica	Heterostichus rostratus	Hyperprosopon argenteum	Hypocritichthys analis	Icelinus filamentosus	Icichthys lockingtoni	Lampanyctus ritteri	Leptocottus armatus	Lestidiops ringens	Leuresthes tenuis	Leuroglossus stilbius	Lycodes cortezianus	Lyopsetta exilis	Merluccius productus	Microstomus pacificus	Oncorhynchus gorbuscha	Oncorhynchus mykiss	Oxylebius pictus	Paralabrax clathratus
$-OL_R)/(0.5 * (OL_L + OL_R))$	0.1 - 0.0 - -0.1 -	₽	:[Į.	Ņ	Ŷ	23.	ł	1	ł			•]				٩	8]	•	Ŷ	Ţ	Ð	æ	å	8.	ſ		1				•		8	g		•
(OLL)		Paralabrax nebulifer	Paralichthys californicus	Peprilus simillimus	Phanerodon furcatus	Phanerodon vacca	Physiculus rastrelliger	Pleuronichthvs ritteri	Porichthys notatus	Prionotus stanhanonhovs	Protomudoohum analoni -	Protomycuopitam crocker		Rhinogobiops nicholsii	Sardinops sagax	Scomber japonicus	Scopelengys tristis	Sebastes diploproa	Sebastes goodei	Sebastes hopkinsi	Sebastes jordani	Sebastes levis juvenile	Sebastes miniatus	Sebastes mystinus	Sebastes paucispinis	Sebastes rosenblatti	Sebastes saxicola	Sebastes semicinctus	Sebastes serranoides	Sebastolobus alascanus	Seriphus politus	Cohursens arrentes		oteriobi acriius reucopsarus	Symbolophorus califormensis	Synodus lucioceps	Tarletonbeania crenularis	Tetragonurus cuvieri	Thaleichthys pacificus	Trachurus symmetricus	Zaniolepis latipinnis

Figure A2. Superimposed violin and one-dimensional scatter plots of normalized differences between left and right sagittal otolith width by species (i.e., $\frac{OW_l - OW_r}{0.5 * (OW_l + OW_r)}$, where OW_l and OW_r are left and right sagittal otolith widths).

Table A1. Paired t-tests of left and right sagittal otolith lengths by species. Sample size (*n*), estimated difference (*d*), p-value (*p*), and scaled difference, calculated as $d_r = 2 n \frac{(0.5 d)^2}{(2n-1)s_{0L}^2}$, where s_{OL}^2 is the variance of all left and right otolith lengths. Using Bonferroni's correction for multiple testing, a p-value of 0.0006 would be equivalent to an alpha-level of 0.05. P-values less than 0.0006 and corresponding scaled differences are highlighted in bold.

Species	n	d	р	d_r
Ammodytes hexapterus	4	-0.028	0.3906	2.97E-03
Amphistichus argenteus	7	-0.013	0.3151	3.97E-05
Argentina sialis	3	0.027	0.1591	5.04E-03
Artedius notospilotus	8	-0.008	0.8752	1.18E-05
Atherinops affinis	8	-0.023	0.4092	9.08E-03
Atherinopsis californiensis	11	-0.013	0.6898	7.49E-05
Ceratoscopelus townsendi	21	0.017	0.3508	1.82E-03
Cheilopogon pinnatibarbatus	2	0.075	0.8033	4.85E-02
Chilara taylori	8	0.027	0.4246	2.01E-04
Chitonotus pugetensis	12	0.051	0.1234	3.35E-03
Chromis punctipinnis	15	-0.004	0.8040	7.43E-06
Citharichthys sordidus	27	0.005	0.8543	2.46E-06
Citharichthys stigmaeus	8	0.013	0.6046	1.36E-03
Clupea pallasii	4	-0.010	0.8201	1.66E-03
Cololabis saira	12	0.021	0.1806	2.29E-03
Cymatogaster aggregata	5	-0.038	0.2390	3.17E-03
Diaphus theta	16	0.004	0.7796	3.69E-05
Embiotoca jacksoni	5	-0.058	0.2387	3.12E-03
Engraulis mordax	89	0.006	0.3737	2.67E-05
Genyonemus lineatus	12	-0.048	0.0779	7.55E-04
Girella nigricans	2	0.331	0.4990	8.96E-02
Halichoeres californica	10	0.015	0.5249	5.13E-04
Heterostichus rostratus	2	-0.106	0.1383	1.29E-02
Hyperprosopon argenteum	5	-0.022	0.7184	9.36E-05
Hypocritichthys analis	4	-0.008	0.7857	6.45E-05
Icelinus filamentosus	2	-0.172	0.4925	1.16E-02
Icichthys lockingtoni	9	-0.011	0.8122	4.25E-06
Lampanyctus ritteri	5	0.020	0.4362	4.93E-03
Leptocottus armatus	3	0.124	0.2172	4.76E-03
Lestidiops ringens	5	-0.073	0.0513	9.83E-03
Leuresthes tenuis	8	0.015	0.4123	2.95E-04
Leuroglossus stilbius	5	0.040	0.2076	2.92E-03
Lycodes cortezianus	3	-0.063	0.7740	3.30E-02
Lyopsetta exilis	7	0.120	0.2234	1.00E-02
Merluccius productus	119	-0.037	0.0384	2.08E-05
Microstomus pacificus	3	-0.067	0.3932	4.05E-03
Oncorhynchus gorbuscha	86	0.026	0.0762	5.79E-04

Species	n	d	р	d_r
Oncorhynchus mykiss	44	0.029	0.2022	1.04E-03
Oxylebius pictus	5	-0.041	0.0077	5.13E-04
Paralabrax clathratus	12	-0.029	0.5331	5.02E-04
Paralabrax nebulifer	4	-0.105	0.3155	1.06E-03
Paralichthys californicus	5	0.091	0.4107	4.42E-04
Peprilus simillimus	10	0.045	0.2925	1.78E-03
Phanerodon furcatus	6	-0.038	0.5029	1.48E-04
Phanerodon vacca	7	-0.043	0.4511	1.07E-03
Physiculus rastrelliger	3	0.043	0.5389	2.12E-02
Pleuronichthys ritteri	7	-0.021	0.5621	1.47E-04
Porichthys notatus	17	-0.076	0.0019	4.87E-04
Prionotus stephanophrys	4	0.040	0.6751	4.91E-05
Protomyctophum crockeri	6	-0.036	0.0142	1.82E-02
Rathbunella hypoplecta	10	0.003	0.9013	1.24E-05
Rhinogobiops nicholsii	4	-0.043	0.2646	5.07E-03
Sardinops sagax	182	-0.020	<0.0001	3.51E-04
Scomber japonicus	76	-0.014	0.5634	4.66E-05
Scopelengys tristis	3	-0.006	0.8737	3.60E-05
Sebastes diploproa	6	-0.003	0.9447	6.43E-07
Sebastes goodei	18	0.008	0.7813	1.34E-06
Sebastes hopkinsi	19	-0.006	0.7803	1.35E-06
Sebastes jordani	50	0.009	0.5729	2.28E-06
Sebastes levis juvenile	4	0.006	0.8953	4.59E-05
Sebastes miniatus	2	0.090	0.5206	8.42E-03
Sebastes mystinus	4	0.031	0.8235	3.34E-05
Sebastes paucispinis	4	0.018	0.5285	2.62E-03
Sebastes rosenblatti	3	0.003	0.9118	2.57E-06
Sebastes saxicola	6	-0.032	0.4118	7.40E-04
Sebastes semicinctus	6	-0.019	0.3631	2.11E-05
Sebastes serranoides	3	-0.057	0.6262	3.65E-04
Sebastolobus alascanus	4	0.031	0.8131	5.46E-05
Seriphus politus	21	-0.097	0.0303	7.75E-04
Sphyraena argentea	6	0.155	0.2393	4.94E-04
Stenobrachius leucopsarus	37	-0.026	0.0749	1.55E-03
Symbolophorus californiensis	56	0.074	<0.0001	4.15E-03
Synodus lucioceps	2	0.000	0.9950	7.22E-09
Tarletonbeania crenularis	17	-0.005	0.6999	5.95E-05
Tetragonurus cuvieri	4	0.010	0.7147	3.86E-05
Thaleichthys pacificus	3	0.002	0.9489	1.21E-06
Trachurus symmetricus	101	0.015	0.1997	4.21E-05
Zaniolepis latipinnis	2	0.033	0.5000	9.50E-05

Table A2. Paired t-tests of left and right sagittal otolith widths by species. Sample size(*n*), estimated difference (*d*), p-value (*p*), and scaled difference, calculated as $d_r = 2n \frac{(0.5 d)^2}{(2n-1)s_{0W}^2}$, where s^2_{OW} is the variance of all left and right otolith widths. Using Bonferroni's correction for multiple testing, a p-value of 0.0006 is equivalent to an alpha-level of 0.05. P-values less than 0.0006 and corresponding scaled differences are highlighted in bold.

Species	n	d	р	d_r
Ammodytes hexapterus	4	-0.003	0.7408	3.96E-04
Amphistichus argenteus	7	-0.030	0.0769	1.10E-03
Argentina sialis	3	0.043	0.3363	5.58E-02
Artedius notospilotus	8	-0.002	0.9548	5.05E-06
Atherinops affinis	8	0.020	0.6048	8.05E-03
Atherinopsis californiensis	11	-0.042	0.0852	3.66E-03
Ceratoscopelus townsendi	21	-0.010	0.3663	2.46E-03
Cheilopogon pinnatibarbatus	2	-0.200	0.4485	8.82E-02
Chilara taylori	8	0.146	0.0190	1.88E-02
Chitonotus pugetensis	12	-0.003	0.8074	3.30E-04
Chromis punctipinnis	15	0.024	0.2667	1.27E-03
Citharichthys sordidus	2	-0.079	0.6007	2.04E-04
Citharichthys stigmaeus	8	0.001	0.9825	7.47E-06
Clupea pallasii	4	-0.005	0.5975	1.02E-03
Cololabis saira	12	-0.002	0.8217	4.25E-05
Cymatogaster aggregata	5	-0.030	0.2990	6.21E-03
Diaphus theta	16	0.011	0.2212	4.39E-04
Embiotoca jacksoni	5	-0.050	0.1889	7.00E-03
Engraulis mordax	47	0.017	0.0066	6.92E-03
Genyonemus lineatus	12	-0.022	0.4232	1.17E-03
Girella nigricans	2	0.011	0.9250	7.54E-05
Halichoeres californica	10	0.015	0.3574	6.18E-03
Heterostichus rostratus	2	-0.010	0.5000	1.11E-03
Hyperprosopon argenteum	5	-0.005	0.9275	3.01E-05
Hypocritichthys analis	4	-0.014	0.8608	4.96E-04
Icelinus filamentosus	2	-0.099	0.5032	2.07E-02
Icichthys lockingtoni	9	0.001	0.9505	5.05E-07
Lampanyctus ritteri	5	-0.005	0.7101	8.53E-05
Leptocottus armatus	3	-0.037	0.6731	1.28E-03
Lestidiops ringens	5	-0.005	0.7123	1.27E-04
Leuresthes tenuis	8	-0.010	0.7335	3.53E-04
Leuroglossus stilbius	22	-0.006	0.3563	8.02E-04
Lycodes cortezianus	3	-0.036	0.5187	5.35E-02
Lyopsetta exilis	7	-0.026	0.5396	9.27E-04
Merluccius productus	119	0.023	0.0033	7.26E-05
Microstomus pacificus	3	-0.005	0.8986	2.96E-04
Oncorhynchus gorbuscha	86	-0.016	0.1915	4.03E-04

Species	n	d	р	d_r
Oncorhynchus mykiss	44	0.008	0.6444	2.67E-04
Oxylebius pictus	5	-0.002	0.7413	4.71E-06
Paralabrax clathratus	12	0.023	0.2768	3.41E-03
Paralabrax nebulifer	4	0.053	0.5116	2.96E-03
Paralichthys californicus	5	-0.005	0.9470	3.66E-06
Peprilus simillimus	10	-0.012	0.4787	5.50E-04
Phanerodon furcatus	6	-0.039	0.3394	8.13E-04
Phanerodon vacca	7	-0.017	0.5121	6.17E-04
Physiculus rastrelliger	3	0.067	0.1038	3.29E-02
Pleuronichthys ritteri	7	-0.033	0.0905	1.38E-03
Porichthys notatus	17	-0.017	0.5399	5.80E-05
Prionotus stephanophrys	4	-0.010	0.8028	8.21E-06
Protomyctophum crockeri	6	0.016	0.0283	5.11E-03
Rathbunella hypoplecta	10	-0.004	0.5740	3.32E-04
Rhinogobiops nicholsii	4	-0.025	0.3366	3.27E-03
Sardinops sagax	200	0.010	0.0001	6.80E-04
Scomber japonicus	104	0.003	0.6157	1.13E-05
Scopelengys tristis	3	-0.015	0.5048	8.29E-04
Sebastes diploproa	6	0.076	0.1828	1.23E-03
Sebastes goodei	18	-0.020	0.1237	4.15E-05
Sebastes hopkinsi	19	0.017	0.0966	5.79E-05
Sebastes jordani	50	-0.007	0.3641	5.81E-06
Sebastes levis juvenile	4	-0.047	0.1939	1.19E-02
Sebastes miniatus	2	0.026	0.5000	3.92E-03
Sebastes mystinus	4	-0.050	0.4573	5.97E-04
Sebastes paucispinis	4	0.003	0.3910	1.83E-04
Sebastes rosenblatti	3	-0.083	0.3925	6.81E-03
Sebastes saxicola	6	-0.058	0.1102	5.99E-03
Sebastes semicinctus	6	0.021	0.1311	8.57E-05
Sebastes serranoides	3	-0.028	0.5747	3.79E-04
Sebastolobus alascanus	4	0.022	0.7772	4.78E-05
Seriphus politus	22	0.030	0.0153	4.14E-04
Sphyraena argentea	7	-0.085	0.3269	2.32E-03
Stenobrachius leucopsarus	37	-0.008	0.3635	1.42E-04
Symbolophorus californiensis	56	0.016	0.0144	3.94E-04
Synodus lucioceps	2	0.058	0.0497	1.78E-03
Tarletonbeania crenularis	17	-0.004	0.4224	9.10E-05
Tetragonurus cuvieri	4	-0.011	0.0784	3.10E-04
Thaleichthys pacificus	3	-0.007	0.8109	3.53E-05
Trachurus symmetricus	105	-0.005	0.4700	3.16E-05
Zaniolepis frenata	2	0.035	0.6855	1.27E-01
Zaniolepis latipinnis	2	-0.048	0.3820	1.69E-03